US Army Corps

of Engineers

Construction Engineering USACERL Technical Report 96/58
Research Laboratories April 1996

A Methodology for Linking Symbolic and
Graphical Models for Collaborative
Engineering

by

Jeffery S. Heckel
Kirk D. McGraw

Michael P. Case

The demand for flexible and efficient design of new facili-
ties and the maintenance of existing facilities has ledto a
new breed of tools for use by architects and engineers.
These tools provide a symbolic model of the facility on
which to base decisions and recommendations using
knowledge and rules that are determined by domain
experts within a particular field. However, these tools do
not provide an easily understood graphical representation
of the design as do traditional Computer-Aided Drafting
(CAD) systems.

The objective of this research was the design and imple-
mentation of a methodology to allow efficient and reliable
bidirectional communication between a rule-based analy-
sis system and a CAD system. This methodology enables
a symbolic model in the analysis system to be repre-
sented and manipulated from within the CAD system.

This report discusses the design decisions that were
made during system research and development. It
describes the methodology implemented and gives an
example of its use. An appendix contains a list of
functions that were implemented and used within the
system.

9960506 122

T) el

Janlalds A

- Approved for public release; distribution is unlimited.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 96/58, A Methodology for Linking Symbolic and Graphical
Models for Collaborative Engineering

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user
of this report, your customer comments will provide USACERL with information essential for improving future
reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which
report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management
procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved,
operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

O

. Easy to Understand:

[=%

. Easy to Implement:

o

. Adequate Reference Material:

f. Relates to Area of Interest:

. Did the report meet your expectations?

= <]

. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports
of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or
discuss the topic, please fill in the following information.

Name:

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-TR-I

P.O. Box 9005

Champaign, IL 61826-9005

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1996 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Methodology for Linking Symbolic and Graphical Models for Collaborative Engineer- 4A162784
ing AT45
FF-XS5

6. AUTHOR(S)
Jeffery S. Heckel, Kirk D. McGraw, and Michael P. Case

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Construction Engineering Research Laboratories (USACERL)
P.O. Box 9005
Champaign, IL 61826-9005

TR 96/58

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Headquarters, U.S. Army Corps of Engineers (HQUSACE)
ATTN: CEMP-ET
20 Massachusetts Avenue, NW.,

Washington, DC 20314-1000

11, SUPPLEMENTARY NOTES
Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The demand for flexible and efficient design of new facilities and the maintenance of existing facilities has led to a new breed
of tools for use by architects and engineers. These tools provide a symbolic model of the facility on which to base decisions and
recommendations using knowledge and rules that are determined by domain experts within a particular field. However, these
tools do not provide an easily understood graphical representation of the design as do traditional Computer-Aided Drafting
(CAD) systems.

The objective of this research was the design and implementation of a methodology to allow efficient and reliable bidirectional
communication between a rule-based analysis system and a CAD system. This methodology enables a symbolic model in the
analysis system to be represented and manipulated from within the CAD system.

This report discusses the design decisions that were made during system research and development. It describes the
methodology implemented and gives an example of its use. An appendix contains a list of functions that were implemented and
used within the system.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Computer-Aided Design and Drafting (CADD) 80

modeling) 16. PRICE CODE
rule-based analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

SAR

SN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS! Std 239-18
298-102

2 USACERL TR 96/58

Foreword

This study was conducted for the Directorate of Military Programs, Headquarters, U.S.
Army Corps of Engineers (HQUSACE) under Project 4A162784AT45, “Energy and
Energy Conservation”; Work Unit FF-XS5, “Expert System Analysis and Concurrent
Engineering for Energy Systems Design.” The technical monitor was Dan Gentil,
CEMP-ET.

The work was performed by the Engineering Processes Division (PL-E) of the Planning
and Management Laboratory (PL), U.S. Army Construction Engineering Research
Laboratories (USACERL). The USACERL principal investigator was Jeffery S.
Heckel. Dr. Michael P. Case is Chief, CECER-PL-E; L. Michael Golish is Operations
Chief, CECER-PL; and Dr. David M. Joncich is Chief, CECER-PL. The USACERL
technical editor was Linda L. Wheatley, Technical Resources Center.

Recognition is due Josh Yelon (PL-E) for his early development and testing of the
CBrain communication application. Steve Donoho (PL-E) is recognized for his develop-
ment and testing of communication and manipulation code for use with Microstation
CAD. Finally, recognition goes to Jerry LaGrou and Rajaram Ganeshan (PL-E) for
their assistance in testing and making suggestions for this research.

COL James T. Scott is Commander and Acting Director, and Dr. Michael J. O’Connor
is Technical Director of USACERL.

USACERL TR 96/58

Contents
SF 208 e e 1
FOreWOrd e e e 2
1 INtrodUCHioON i i i e e e e 5
Background e e e 5
] o= (1Y 5
Y o] o] (o Vo] o T 6
Mode of Tech Transfer i e e i e i e 6
2 Problem OVverview e e 7
The Problem DOmMainot i s 7
The Symbolic Model 7
The Graphical Model i i e 8
The Generic Symbolic/Graphical Architecturet 8
3 CBrain: The CommunicationLink i, 9
4 Linking of the Symbolic and Graphical Models WithCBrain.................... 11
5 Issues in the Use and Implementationof Linking 13
Compound ODJECES & v\ttt e e 13
Local Coordinate SYStemttt e 14
Generic CAD Shapes .. .o i vttt i e e 15

6 Methodology for Manipulating and Displaying Symbolic Objects Within a

CAD SYSteM e e e 16
7 Example USagettt 18
Symbolic Frame Definition o i i 18
SYStEM SHAMUP . oottt ettt e e 22
Display of Symbolic Objects it i 24
8 COoNCIUSIONS i i e e e 27
RE BN ot e i e 28

Appendix A: Source Code Listingcovviin i e 29

USACERL TR 96/58

Appendix B: Application Programming Interface (API) it 69

Acronyms and Abbreviations 77

Distribution

USACERL TR 96/58

1

Introduction

Background

The use of Computer-Aided Drafting (CAD) systems has become commonplace within
the architecture/engineering community (AEC). CAD systems provide an easily under-
stood graphical representation of the design. Unfortunately, CAD systems do not pro-
vide a computable representation of the design (e.g., the computer cannot differentiate
between a wall and a pipe because both are represented by line segments). Further,
graphical models lack the depth necessary for analysis and evaluation.

In the Army, tight Federal budgets and a shift from global to continental-based forces
require flexible and efficient design of new facilities and maintenance of existing facili-
ties. These goals, coupled with a loss of experienced facility designers, demand more
rigorous analysis and enhanced design quality from architects and engineers.

To meet the demand for higher-quality, lower-cost designs, a new breed of tools is
emerging. These tools provide a symbolic model of the facility on which to base deci-
sions and recommendations using knowledge and rules that are determined by domain
experts within a particular field. While symbolic models are computable, they often
are not easily understood.

This report defines a methodology for linking a symbolic model in a rule-based analysis
system, the Agent Collaborative Environment (ACE), with a graphical model in a com-
mercial CAD system. This methodology unifies symbolic and graphical models, allow-
ing the user to create and manipulate the symbolic model from within the CAD system
and vice versa.

Objective

The objective of this research was to design and implement a methodology to allow
efficient and reliable bidirectional communication between ACE and CAD systems.
With this communication interface methodology established, a system was to be
developed to enable objects within ACE to be represented within the CAD system.

6 USACERL TR 96/58

Approach

This problem was solved in two phases. First, a communication link was developed
between the ACE and CAD systems. This link established a set of application pro-
gramming interface (API) calls used to send messages between the two systems. Once
the communication API was established, programmers developed a methodology for
creating and manipulating the symbolic model in ACE based on the graphical model
in the CAD system and vice versa. This methodology, called CADTalk, includes a
protocol for displaying objects in the CAD system, a way to link these objects to form
assemblies of objects, and the ability to manipulate these objects from within the CAD
system and have the changes reflected within ACE. This methodology can be used by
agent developers to create agents that build symbolic models from within the graphical

environment (CAD system) and then perform analysis of this symbolic model within
ACE.

Mode of Tech Transfer

The ACE system is being used by several District offices to aid in architectural design
and energy analysis of facilities. CADTalk is being used by some of these District
offices with the ACE system to develop agents that will interface with CAD systems.
The ACE system technology is being transferred to Gold Hill, Inc., Cambridge, MA
through a Cooperative Research and Development Agreement (CRaDA). CADTalk is
included in this CRaDA.

USACERL TR 96/58

2 Problem Overview

The Problem Domain

Current CAD systems are widely used in AEC for the display and representation of
geometric graphical models. These systems allow a designer to easily and efficiently
place and manipulate elements such as text, lines, arcs, and circles within a drawing.
These drawing elements are used to represent design objects such as walls, doors, and
windows. In addition to the graphical information displayed by the CAD system, many
objects also have some type of associated symbolic information. For example, a wall
can be represented in the CAD system as a series of lines, but there is also symbolic
information related to a wall, such as its construction type, R-value, and fire rating.
Some CAD systems allow this type of information to be stored in an external database
or as graphical element “attributes.” However, these systems are unable to represent
conceptual objects such as spaces and rooms. Further, they do not support relation-
ships between objects. Without such relationships, it is very difficult to determine if
two pipes are part of the same system or two doors are part of the same wall.

The Symbolic Model

The symbolic model for an object consists of attributes and data that are not geo-
graphical or graphical in nature. Data of this type is better suited for reasoning
analysis and evaluation. The ACE system is an agent-based software environment
developed at USACERL. Agents are expert systems that are tightly integrated with
each other using libraries of objects such as walls, fans, or pumps. The primary role
of an agent in ACE is as an assistant that uses heuristic rules and a checklist facility
to automate routine tasks. Experienced users can store their knowledge in agents for
use by others. With this knowledge and a symbolic model created in ACE, a user can
easily perform complex or repetitive analyses of the model. This analysis can then be
used to alert the user of errors in the model and even alter the model to correct these
errors.

8 USACERL TR 96/58

The Graphical Model

The graphical model is composed of data that can be used to visualize an object. These
data allow architects/engineers to better visualize their design. Commercial CAD
systems have been designed to store and manipulate this type of data efficiently, with
interfaces that allow a user to create complex drawings and display them. However,
the information contained within these systems is difficult to analyze other than
graphically. For example, two line elements within a drawing might be identical
except for their separate geographic or graphical information. In this case, a CAD
system could not distinguish an interior wall from an exterior wall or a wall from a

pipe.

The Generic Symbolic/Graphical Architecture

The developed system consists of separate generic symbolic and graphical models. The
primary reason for this separation was the desired ability to interact with several
different systems. A generic symbolic model can be communicated to other programs,
which can perform specific analyses of their own. Similarly, the generic graphical
model can be moved or displayed in different CAD systems.

USACERL TR 96/58

CBrain: The Communication Link

The first requirement in the integration of the ACE symbolic model and the CAD
graphical model was establishing a communication link between the symbolic and
graphical environments. This link would need to provide communication between ACE
and each of the two CAD systems in widespread use by Corps District offices—
AutoCAD® by Autodesk” and Microstation® by Bentley Systems. ~ This communi-
cation link needed to be efficient, easy to use, and, most importantly, reliable. CBrain
was the system developed to meet these requirements.

The low-level method of communication between ACE and the CAD system is done
using the Microsoft® Windows® Dynamic Data Exchange (DDE) mechanism that
sends data from one application to another. A client application makes a connection
to a server application and a channel is established. With this channel established,
the client application can then request information from the server application. These
requests are strings of data that the server application then interprets and responds
to.

A concern with the interaction between ACE and the CAD system was the possibility
that a request from CAD to ACE would in turn require a request from ACE to CAD.
This possibility could continue recursively several times, adding to the complexity of
a single request. In this situation, it is important to match incoming responses with
the appropriate outgoing request. If this matching is not maintained, the system could
become corrupted.

To address this concern, the DDE messages sent between the two systems are not
simple strings of information. A message from one system to the other contains three
separate “packets” of information joined into one message. The three packets of infor-
mation correspond to:

operator - The operator defines the type of message transmitted. The available types
are an evaluation, a result, or a cancel.

sequence number - The sequence number is used to coordinate among recursive levels
of requests.

:‘ Autodesk, Inc., 111 McInnic Parkway, San Rafael, CA 94903.
Bentley Systems, inc., 690 Pennsylvania Drive, Exton, PA 19341-1136.

10

USACERL TR 96/58

arguments - The arguments are used with the operator to perform the desired
operation. The arguments most often would be the command to be evaluated.

Messages containing packets are sent from one system to the other requesting the
value of an item or execution of a function. A message is decoded, processed, and the
result sent back. An example of a message from CAD to ACE might be: “EVAL 1 (+
1 2).” This message would be decoded and the arguments “(+ 1 2)” sent to the Lisp
“EVAL” command. The result would then be sent back in the message: “RESULT 1
3.” Notice that the sequence number is the same in both the request and result
messages. Although messages are normally sent from CAD to ACE, it is possible for
a message to be sent in the reverse direction, from ACE to CAD. Therefore, ACE and
CAD act as both server and client applications at times during program execution.

Two low-level functions are defined for use with the CBrain communication interface
on both the ACE and CAD sides. These functions are ac-eval and ac-eval-text on the
ACE side and cl-eval and cl-eval-text on the CAD side. Functions ac-eval and cl-eval
accept a command as a parameter, execute it on the other system, and return a result.
For example, (ac-eval (+ 1 2)) would return the result 3. Functions ac-eval-text and cl-
eval-text accept a string as a parameter, pass it to the other system, read it, and return
a result. For example, (ac-eval-text “(+ 1 2)”) also would return the result 3. All other
functionality of the ACE/CAD linking is built upon the use of these basic functions to
execute commands on each of the systems. CBrain works both in the Microsoft®
Windows® and Microsoft® Windows NT™ operating systems.

USACERL TR 96/58

1

Linking of the Symbolic and Graphical
Models With CBrain

Once the communication interface was established between ACE and the CAD system,
it was possible to link symbolic objects in ACE with graphical objects in CAD. To
create this link, a unique identifier from ACE is associated with the object in CAD, and
likewise, a unique identifier in the CAD system is associated with the object in ACE.
Once this link is set up, operations on an object in one system will result in the
notification of the associated object in the other system.

Figure 1 illustrates the creation of a link between the symbolic and graphical data.
An instance of a WALL symbolic frame definition is created with the name EAST-
WALL in ACE. This instance is represented in the CAD system as a set of line
entities. Each graphical object within the CAD system (AutoCAD) has a unique
identifier called an entity handle. User data (called extended entity data) may be
attached to a graphical object within AutoCAD. After the series of lines is drawn

ggg Z‘.>‘
File Edit View Assist Draw Construct Modify Settings Render Model
CADTalk Help

U N R e S R

SOUTH_WALL
information:
ROTATION {0 0 0.0)
Z_LENGTH 2700

[irLoo_1

'Y_LENGTH 140
fnorTH_waLL X_LENGTH 20000.0
CAD_LAYER WALL

[Elroom §
ﬁﬁ,v..,“::;
(i WEST_WALL
s WINDOW 1

- CAD_COLOR 3
S CONSTRUCTION-TYPE CMU
) SURFACE_2 INTERIOR
SURFACE_1 EXTERIOR
WIDTH 148

(0.0 9.0 8.9 k¢

EXTERIOR
INTERIOR

Command:
iCommand: Select GW Object:

Project is being loaded. Please wait...

oading Agent ARCHS5-AGENT.

M 0oading agent Architectural Design5...
B v

OISO
Project Message Window

Figure 1. Example linkage.

12

USACERL TR 96/58

within AutoCAD, the name of the object in ACE, EAST-WALL, is added to the
graphical objects as extended entity data. In turn, the entity handles for the lines are
added to a slot in the EAST-WALL object in ACE. With this process complete, a link
is established between the ACE object and its associated CAD object. The same pro-

cedure is used in Microstation using a tag as the unique identifier and linkage infor-
mation as the user data.

It is now possible to automate this process and provide extended capabilities to these
objects. An example of an extended capability is the ability to manipulate objects with-
in the CAD system and have these changes reflected in ACE. This was done by writing
specialized forms of native commands for the CAD system, such as the move command.
This specialized command would perform the movement of objects in the CAD system
and then inform each associated instance in ACE using a message sent from CAD to
ACE. This message contains the relative distance that the object was moved within
the CAD system. The ACE system could either record this information, disallow the
move, or perform some analysis based on the new object location.

USACERL TR 96/58

13

5 Issues in the Use and Implementation of
Linking

This chapter covers several items of concern that arose during the design of the
linking methodology. These concerns had to be resolved before the actual coding of the
implementation could begin.

Compound Objects

An issue that was initially addressed was how to relate symbolic objects that need to
be graphically linked. Several different objects may be linked to form a higher level
object or an assembly. Certain actions performed on the higher level object may, in
turn, require an operation to be performed on lower level objects. A wall, for example,
may contain several doors and windows. When the wall is moved, these doors and
windows must move as well. This linking of objects was solved using a semantic link
within ACE called HAS-PART. A semantic link is a structure for creating an arbitrary
relationship between two separate objects within ACE. HAS-PART is one type of
semantic link within ACE. Other types can be defined by the user for different pur-
poses, such as a SUPPORTED-BY semantic link for a floor and beam object. The HAS-
PART semantic link has a FROM object and a TO object. In this example, the wall
object HAS-PART a door and several windows. The link goes from the wall to the door
and windows. Therefore, when an object is moved and has a HAS-PART semantic link
to other objects, those objects are moved as well. Using the HAS-PART semantic link,
it is possible to create a model of how a set of objects are linked together to create an
assembly. A building, for example, can be defined with the model shown in Figure 2,
established using several HAS-PART semantic links between different building compo-
nent objects.

Building — Area Floor
§ Roof

Room — Wall i Door
Window

Figure 2. Building has-part object model.

14 USACERL TR 96/58

Local Coordinate System

Another issue that arose concerned the geometric relationship from one object related
to another. Considering objects related using the HAS-PART semantic link, the lower
object in the HAS-PART relationship should be geometrically placed in relation to the
higher level object. To address this concern, all CAD-aware objects have an origin and
rotation value associated with them. These two values are used to create a local
coordinate system (LCS) for that object. Figure 3 shows the LCS for a WALL object.
A WALL object, for example, is placed
relative to the location of a specific
ROOM object within the model pre-
sented in Figure 2. In turn, the
ROOM object is placed relative to the
BUILDING object. Only the top-most
object in the HAS-PART relationship
hierarchy (a BUILDING object in this

N F] case) has a true, absolute geometric
Figure 3. Wall local coordinate system.

origin stored with it.

With the LCS established for an object, it is possible to then build a local transfor-
mation matrix for that object. To derive the global coordinates for an object, it is
necessary to build the transformation matrix for an object, move up the HAS-PART
relationship to the higher object, build its transformation matrix, multiply the two
matrices together, and continue up the HAS-PART relationship until no further objects
are available. The final matrix will be the global transformation matrix for that object.
Multiplying a local three-dimensional point through the global transformation matrix
will result in a global three-dimensional point. The functions for these operations are
defined in ACE Lisp file cadshape.lsp (see Appendix A for listing). Several functions
have been written to hide this complexity from the user, they are:

:gets the transformation matrix of an instance - traces down through linked items
(define-handler (CAD-SHAPE-OBJECT get-matrix) ()

kg KK Kk FX 33 skokokk Kk fekk skksk ok ok F3

(define-handler (CAD-SHAPE-OBJECT get-relative-origin) ()

:get an objects absolute origin - if there is a reference object, then get it's transformation
:matrix and multiply our origin by that
(define-handler (CAD-SHAPE-OBJECT get-absolute-origin) (&aux temp)

USACERL TR 96/58

15

(define-handler (CAD-SHAPE-OBJECT set-relative-origin) (new)

EXT T3 3 Kk sk + k Kok

y

;set an objects absolute origin - if there is a reference object, then get it's transformation
:matrix and multiply the new origin by the inverse of that
(define-handler (CAD-SHAPE-OBJECT set-absolute-origin) (new &aux temp)

skokkKk Kk skokk sekoksk % ¥k *

skakoskok ok skskokskookok sk ok skeskskokokkokskokk ¥ ok SKokK Kk KKK KKk ¥ k of Kokskk

(define-handler (CAD-SHAPE-OBJECT get-absolute-rotation) (&aux temp)

kokk ¢33 *

(define-handler (CAD-SHAPE-OBJECT set-relative-rotation) (new)

xxxxx sskoksk E3

(define-handler (CAD-SHAPE-OBJECT set-absolute-rotation) (new &aux temp)

Generic CAD Shapes

f

Once the methodology had been established for creating links between symbolic objects
within ACE and graphical objects within CAD, basic geometric shape objects were
created within ACE that would contain much of the necessary code for implementing
CAD-aware objects within ACE. These shapes were simple could be represented in
multiple CAD systems and manipulated within them. The first initial shapes were
text, line, two-dimensional polygon, three-dimensional polygon, arc, and sphere. With
this basic coding completed, it was possible for a user to create an object that inherits
from these shape objects and receives all needed information to be graphically
represented in CAD. For exainple, a

WALL object definition can inherit

from the three-dimensional polygon
object to acquire its CAD graphical =
representation. These CAD shape /Y
objects have common attributes such

as an origin, rotation, and possibly & V"{*

length in each of the x, y, and z direc- =
tions of a Cartesian axis system.
Figure 4 shows a three-dimensional

polygon object. é—,—/ﬂ

Figure 4. 3D polygon representation.

16 USACERL TR 96/58

6 Methodology for Manipulating and
Displaying Symbolic Objects Within
a CAD System

With the communication interface between systems established, a procedure for creat-
ing a link between the symbolic object in ACE and the graphical object in CAD defined,
and issues about linking and relating symbolic objects in ACE addressed, it was time
to address how to actually manipulate and display an ACE symbolic object in the CAD
system. To accomplish this, object methods (called handlers) were written in ACE in
the Lisp programming language. All symbolic frames in ACE descend from the frame
BB-OBJECT. By creating CAD-specific slots and handlers for this frame, all descen-
dants inherit these slots and handlers. These handlers have generic names and imple-

mentations that then call specialized handlers based on the current CAD system used
by ACE.

In many situations, a frame may not be representable within a CAD system. To pre-
vent an attempt to draw a nondrawable object, BB-OBJECT was given a slot named
DRAWABLE. By default, this slot value is false. If a user defines a new frame with
a default value of true for this slot, the frame is considered CAD-aware. Two handlers
were written for BB-OBJECT to “get” and “set” this value, get-drawable and set-
drawable respectively.

The BB-OBJECT VIEWS slot contains the unique CAD identifier associated with the
graphical representation within the CAD system. This slot contains an association
list, which contains multiple occurrences of a pair containing a key and associated
value. For example, ((keyl valuel) (key2 value2)), is an association list with two pairs
shown. This association list allows ACE to track the graphical representation of a
symbolic object within multiple CAD systems at once. One key is associated with
AutoCAD and another key is associated with Microstation. In the future, other CAD
systems can be added as well. The generality of the VIEWS slot also can be used in a
system other than CAD to represent a symbolic object, which could be better

represented by a spreadsheet file. The VIEWS slot may contain an entry such as:
(EXCEL “filel.x1s”). It would then be possible to start Microsoft® Excel® and load
spreadsheet “filel.xls” to display information relevant to this symbolic object. Three

USACERL TR 96/58

17

handlers were written for BB-OBJECT to deal with this slot value: set-view-tag,
get-view-tag, and clear-view-tag.

Several functions and handlers are defined for the actual creation and display of a
symbolic object. Creation of a new CAD-aware symbolic object from the CAD system
is performed with a call to the ACE function process-drawable-object. This function
accepts the name of a frame and an agent as parameters. A new object is created
using the given frame name definition and assigned to the given agent. A handler,
cad-create (defined under BB-OBJECT), is then called and used to acquire initial
values for a newly created object before being displayed. The handler returns true,
indicating success.

Finally, the handler cad-draw is called to display the object. This handler (also
defined under BB-OBJECT) would call a function or invoke a command in the CAD
system to display the object. The drawing of the object typically uses previously set
slot values for the object, hence the need for the cad-create handler. Once the object
is displayed in CAD, symbolic object name must be associated in ACE with the unique
identifier in CAD. The CAD system should return this unique identifier to ACE. Then
two handlers, set-cad-inst-name and get-cad-inst-name, can be called to form the asso-
ciations. Once this association is set, a symbolic object can be displayed in the CAD
system.

The next requirement is an ability to manipulate the object in one system and have the
changes reflected in the other. To accomplish this, two things need to be done, one in
the ACE system and the other in the CAD system. In the ACE system, “when-modi-
fied” functions need to be assigned to slots with values relevant to the graphical
representation. When-modified functions are associated with a slot and are auto-
matically called when the slot value is modified. Typically, when a relevant slot value
changes, the cad-draw handler will be called to redisplay the object.

In the CAD system, native commands must be rewritten or a user interface written to
allow manipulation of these special objects. The move command, for example, is re-
written in AutoCAD so it can deal with these special objects. If one of these objects is
moved, a message is sent to ACE informing it of the move, and the slot values are
updated in the symbolic object.

18 USACERL TR 96/58

7 Example Usage

This chapter gives an example of the set up and use of symbolic and graphical model
linking using ACE and AutoCAD. First, the initial work necessary to make a symbolic
ACE object CAD-aware will be described. Next, how to start the ACE/CAD interface
using predefined ACE functions will be demonstrated. This chapter assumes a knowl-
edge of the Lisp (Steele 1990) programming language, the ACE (Hoff et al. 1995)
system, and the Goldworks® (Gold Hill 1990) frame system. The functions and han-
dlers used within this example are described in Appendix A.

Symbolic Frame Definition

To implement the ability for a symbolic object in ACE to be represented in a CAD
system, the object must “know how” to display itself in CAD. Two approaches for this
are: (1) inherit from one of the generic base CAD shapes that have been predefined or
(2) create a custom drawing function in the CAD system that the symbolic object will
call for display within CAD.

Inherit From A Base CAD Shape

The easiest and fastest approach for making a CAD-aware symbolic frame is to inherit
from one of the predefined base CAD shape objects. New frame definitions inherit
from these base CAD shape objects and are then specialized with the appropriate slots.
Base CAD shape frame definitions are located in the ACE Lisp file cadshape.lsp (see
Appendix A for listing). This file must be added to an ACE library for use of the base
CAD shape frame definitions. The frame definitions for CAD-OBJECT, CAD-SHAPE-
OBJECT, and 3D-CUBE-CAD-SHAPE-OBJECT are defined as:

(define-frame CAD-OBJECT

(:is BB-OBJECT)

(DRAWABLE :default-values (t))

(ORIGIN :default-values ((0 0 0))
:when-modified (cad-update-linked))

(ROTATION :default-values ((0 0 0))
:when-modified (cad-update-linked))

(CAD COLOR :default-values (1))

USACERL TR 96/58

19

(CAD LAYER :default-values (0))

(define-frame CAD-SHAPE-OBJECT
(:is CAD-OBJECT)

(define-frame 3D-CUBE-CAD-SHAPE-OBJECT

(:is CAD-SHAPE-OBJECT)

(X LENGTH
:doc-string "X length relative to origin."
:when-modified (cad-update))

(Y LENGTH
:doc-string "Y length relative to origin."
:when-modified (cad-update))

(Z LENGTH
:doc-string "Z length relative to origin."
:when-modified (cad-update))

Several items are of interest in the definition of the base CAD shape objects. First, the
frame CAD-OBJECT inherits from BB-OBJECT, the root of all frames within ACE.
In this way, the CAD-OBJECT gets all the base functionality of ACE associated with
BB-OBJECT. Second, the CAD-OBJECT slots CAD COLOR and CAD LAYER are
used in the setup of the CAD system color and layer before the object is displayed.
Third, the CAD-OBJECT slots ORIGIN and ROTATION have a when-modified
function attached. This when-modified function, cad-update-linked, will call the cad-
draw handler when these slot values are modified. The function will also attempt to
draw any linked objects in the CAD system following the HAS-PART semantic link.
The code for this when-modified function is:

(defun cad-update-linked (inst slot old new)
(if (send-msg inst :get-view-tag) (send-msg inst :cad-draw))
;redraw all connected items if drawable
(if (send-msg inst :get-drawable)
(mapcar
#(lambda (inst2) (cad-update-linked inst2 nil nil nil))
(cad-linked-items (from-items inst)))))

In the 3D-CUBE-CAD-SHAPE-OBJECT frame definition, note the when-modified
function on the X LENGTH,Y LENGTH, and Z LENGTH slots. This when-modified
function, cad-update, will call the cad-draw handler when any slot’s values are modi-
fied but will not attempt to draw any linked objects, unlike the when-modified function

20 USACERL TR 96/58

cad-update-linked. This difference is because these slot values relate only to the view
or dimension of this object. The ORIGIN and ROTATION slots for CAD-OBJECT
relate to actual position of the object. A change of position may require movement of
linked objects. The code for this when-modified function is:

(defun cad-update (inst slot old new)
(if (send-msg inst :get-view-tag) (send-msg inst :cad-draw)))

The frame definition for a DOOR that inherits from the 3D-CUBE-CAD-SHAPE-
OBJECT is:

(define-frame DOOR
(:is (3D-CUBE-CAD-SHAPE-OBJECT BUILDING COMPONENT))
(HAND :constraints (:one-of (left hand right hand))
:default-values (left hand))
(MATERIAL :constraints (:one-of (wood metal))
:default-values (wood))
(HEIGHT :default-values (2100)
‘unit mm
:map-to-slot z length
:when-modified (map-to))
(WIDTH :default-values (900)
unit mm
‘map-to-slot x length
:when-modified (map-to))
(DEPTH :default-values (140)
:unit mm
:map-to-slot y length
:when-modified (map-to))
(CAD LAYER :default-values (DOOR))

To associate base CAD shape slots with slots in the DOOR definition, note the map-to-
slot attribute of the HEIGHT, WIDTH, and DEPTH slots of the DOOR frame defini-
tion. This attribute is used by the when-modified function map-to associated with each
of these slots. When either the HEIGHT, WIDTH, or DEPTH slot values of a DOOR
object are modified, the map-to when-modified function will run. This function will
retrieve the slot named in the map-to-slot attribute and modify the corresponding
mapped-to slot. In this case, modifying the HEIGHT slot will cause the Z LENGTH
slot value to be modified as well. Since the Z LENGTH slot value is modified, it will
automatically call the cad-update when-modified function, which will in turn call cad-

USACERL TR 96/58 21

draw. The acad-draw handler (the cad-draw handler specialized for AutoCAD) for the
3D-CUBE-CAD-SHAPE-OBJECT frame is:

(define-handler (3D-CUBE-CAD-SHAPE-OBJECT acad-draw) ()
(if (and (slot-value self 'origin) (slot-value self rotation) (slot-value self 'x length)
(slot-value self 'y length) (slot-value self 'z length))
(progn
(send-msg self :acad-cleanup)
(send-msg self :acad-build (append “(insert-3dcube-main
(quote ,(send-msg self :get-absolute-origin))
J(slot-value self 'x length)
J(slot-value self 'y length)
J(slot-value self 'z length)
,(nth 2 (send-msg self :get-absolute-rotation)))))
19))]

The acad-draw handler first checks that the slots needed for display have values.
Second, it does a cleanup that erases any existing graphical object in AutoCAD. (A new
object is drawn, not a modification of an existing object.) Finally, it displays the graph-
ical object in AutoCAD using the needed slots from the symbolic object. Through this
inheritance, instances created from the DOOR frame definition can be automatically
represented graphically within the CAD system.

Create a Custom Drawing Function

This approach requires the creation of a custom drawing function for each CAD-aware
symbolic object. In addition, implementation of the when-modified capability for frame
slots required for display must be handled. For instance, a ROOF frame definition and
its acad-draw handler is defined below:

(define-frame ROOF
(:is BUILDING COMPONENT)
(CORNERS
‘unit mm
:when-modified (cad-update))
(FACIA DEPTH :default-values (300)
‘unit mm

(ORIENTATION :constraints (:one-of (north-south east-west))
:default-values (north-south)

:when-modified (cad-update))
:when-modified (cad-update))

22 USACERL TR 96/58

(OVERHANG :default-values (600)
‘unit mm
:when-modified (cad-update))
(PITCH :default-values (0.25)
:unit %
:when-modified (cad-update))
(DECK :constraints (:one-of (wood concrete steel))
:default-values (wood))
(INSULATION :constraints (:one-of (none glass fiber polyisocyanurate
polystyrene polyurethane))
:default-values (glass fiber))
(ROOF SYSTEM :constraints (:one-of (steep slope low slope))
:default-values (low slope))
(TYPE :constraints (:one-of (gable hip flat))
:default-values (flat)
:when-modified (cad-update))

(define-handler (ROOF acad-draw) ()
(send-msg self :acad-cleanup)
(send-msg self :build-component “(eval ,(append '(make-3d-roof)
(setup-slots self '(corners orientation pitch type facia depth overhang)))))
t)

Relevant slots have an associated when-modified function cad-update (as described on
p 20) that will call the acad-draw handler when any slot values are modified. Note that
the frame does not inherit from any predefined CAD shape. The acad-draw handler
calls an AutoCAD function make-3d-roof that uses the CORNERS, ORIENTATION,
PITCH, TYPE, FACIA DEPTH, and OVERHANG slots of the ROOF frame. This func-
tion was specifically written in AutoCAD for the display of a ROOF object. To create a
custom graphical representation, a developer would have to write native CAD functions
for each CAD system supported, as well as the code required within ACE.

System Startup

To start the interaction between ACE and CAD, only one function needs to be called from
within Lisp: (go-to-cad ‘user). This command will determine the current CAD system (set
in the project information of ACE) and start the CAD system, which will then start
CBrain in both ACE and AutoCAD, thus establishing communication. The “user” symbol
is the name of the agent to which instances created within AutoCAD will be assigned.

USACERL TR 96/58

23

In addition to starting the CAD system and establishing communication, this function
can set up the user interface for the CAD system. Before calling the go-to-cad function,
the function cad-setup-command-add can be called. This function accepts one argu-
ment, a command that AutoCAD will execute after communication is established but
before control is returned to the user. This command could load a specific AutoCAD
menu or some other agent specific AutoCAD setup feature. Once the default interac-
tion between ACE and AutoCAD is set up, the systems will look as shown in Figure 5.
(Notice the ‘CADTalk’ menu option in AutoCAD.)

After initialization, the user can create ACE symbolic objects from within AutoCAD.
These objects will be displayed in AutoCAD using a set of predefined functions written
for AutoCAD. Figure 6 shows an example of the default user interface created for
AutoCAD for ACE symbolic object creation. An item can be selected for creation from
the list of objects displayed. In this example, a WALL object is to be created. The
WALL object inherits from the 3D-CUBE-CAD-SHAPE-OBJECT. During creation, the
cad-draw handler for the WALL frame is called, and its graphical representation is
created in the AutoCAD drawing. The definition for the cad-draw handler, and specifi-
cally the acad-draw handler in this case, is the same as described on p 21.

With a new instance created, a user can select from the menu to display symbolic
information from ACE about this object. The CAD system will request the user to

T ANCAL UNNAMI)
File Edit Yiew Assist Draw Construct Modify Settings Render Maodel
SIS Help

Insen
Annotation...
Link...
Utilities Constraint...
Yes
No

Next
Pass
Done
Side Menu

Help

Instance Information

Processes

40

I

>
%

iCommand:
ICommand:
Command

tagent Architectural Design5 enabled
Agent Architectural Design5 enabled
bone loaging Project.

Project Message Window

Figure 5. Initial screen.

24 USACERL TR 96/58

EEiIe Edit View Assist Draw Censtruct Modify Settings Render Madel
CADTalk Help

5.3006, 9.8779

Drawable Objects:
CEILING
FLOOR
DOOR

INQUIRY
WINDOW LAYER...
WALL MODEL
FIRE_STATION MVIEW
BUILDING PLOT...
BUILDING_COMPONENT RENDER |
ROOM SETTINGS |;
ARCHITECTURAL ZONE SURFACES b
UCS: §
UTILITY

SAVE:

Figure 6. Interface showing ACE drawable objects.

select an object, a request will be made to ACE for slot values, and results will display
in a predefined AutoCAD dialog box (see Figure 7).

Display of Symbolic Objects

Once a CAD-aware frame definition has been created, drawing all instances of a
particular frame is possible with a call to the function cad-draw-all. This function,
listed below, takes a frame name as an argument and then runs the cad-draw handler
on each frame instance.

(defun cad-draw-all (frame)
(if (stringp frame) (setq frame (read-from-string frame)))

(mapcar #(lambda (inst) (send-msg inst :cad-draw)) (frame-instances frame))
t)

USACERL TR 96/58

gfilc Edit View Assist Draw Construct Modify Settings
1 CADTalk Help

Render Madel

-6373.3585,-555.3253

MECO1_WALL_2

Infermation:

ROTATION (8 0 175.394531)
Z_LENGTH 2700
Y_LENGTH 140

X_LENGTH 4192.767
CAD_LAYER WALL
CAD_COLOR 3
CONSTRUCTION-TYPE CMU
SURFACE_?2 INTERIOR
SURFACE_1 EXTERIOR
WIDTH 140

gCommand: Select GW Object:

Figure 7. AutoCAD showing ACE symbolic information.

From within AutoCAD, this command can be sent to ACE with the statement {(cl-eval
‘(cad-draw-all ‘wall))’, for example, to draw all ACE WALL instances in the AutoCAD

system. Figure 8 is an example of an ACE project and its corresponding AutoCAD
drawing.

26 USACERL TR 96/58

= ACE - HEADQRTS v|a = AutoCAD - HEADQRTS -]
Flle Instance View Window Group Help Fie Edit Yiew Assist Draw Construct Modify Settings Bender Model
= ! Query: Has Part L:l CADTalk Help
t@nmoz_noon_sa + ; Toyer]|POOR [* o [-33864.7870.21078.3346 |
[gjwrce2_DOOR_81 lAUtoCAD
ARCO2_NALL_147
S ISHADE
[@irrce2_voor_73 lshadedt
([i}aRco2_WALL_146
[Shadedge
s ARC02_DOOR_72 - 2660l
AAAAA D_COLOE [2 266-edg
al[CAD_LAYEH [DOOR Hidden
DEPTH 140 Filed
5
HAND LEFT_HAND 3 REGEN:
ol HEIGHT
MATERIAL | WOOD
ORIGIN (152.5 8.0 6.0)
[peaneasesetsesates
ROTATION| |(8 @ 8) | LAST_
WIDTH 980 DRAW
EDIT

{(J}arcO2_D0OR_77
(ii}Arce2_DOOR_78 %
ARCB2_NALL_139
{[larce2_boor_67
{[jarco2_DOOR” 68
(lij~RCE2_DOOR_89 hading in 17 passes
QRCBZ.HQLLJ 38 hading complete.

[[Qarco2_NALL 138 = mmand

- -» L_

roject is being loaded. Please wait...
oading Agent ARCHMAIN-AGENT.

roject Window

Figure 8. Larger example of an ACE project and corresponding AutoCAD drawing.

USACERL TR 96/58

27

Conclusions

A methodology (CBrain) to allow efficient and reliable bidirectional communication
between the ACE and CAD systems now enables objects within ACE to be represented
and manipulated within the CAD system. A methodology for linking symbolic objects
in ACE with graphical objects in CAD was described and implemented as the CADTalk
system within ACE.

The CBrain application has proved to be a reliable communication interface. The
ability to pack strings together into one DDE message and allow recursive calling
between ACE and CAD has worked well. The DDE message passing is reliable, and
the speed is fairly good. The use of Dynamic Link Libraries (DLLs) or Object Linking
and Embedding (OLE) would probably increase the communication speed, but would
be hampered by the inability to program within the commercial CAD systems, whose
code is proprietary. The advantage of the DDE technology is that it is established in
industry and works on the Windows®, Windows NT®, and Windows 95° platforms. The
functions written, ac-eval and cl-eval, are low-level basic functions that can be used by
developers to create more complex functions.

The CADTalk methodology provides great flexibility to agent developers. The ability
to establish relations between objects, inherit from base CAD shapes, and create
custom CAD graphical representations allow tremendous flexibility to the agent
developer. Through the inheritance of base CAD shape objects, an agent developer can
avoid much of the coding required to make CAD-aware objects. Coding is still required
if the developer is to make frames with complex actions or representations within
CAD. If a user wishes to develop more complex objects, some extra effort and
knowledge is required. Knowledge of AutoLisp® and how to perform certain actions
within the CAD system is necessary as this approach can be fairly complex. A custom
user interface can be added to the CAD system, but, again, more effort and knowledge

is required.

Future research will seek to use Microsoft® Windows® technologies to improve the
speed of the CBrain communication interface. These technologies include the use of
DLL and OLE mechanisms.

28 USACERL TR 96/58

References

GCLisp Developer, Reference Manual (Gold Hill, Inc., 1990).

Hoff, Kendra Z., Sara E. Ort, Bruce L. Rives, and Kirk D. McGraw, ACE 1.1 User’s Manual,
ADP Report 95/54 (U.S. Army Construction Engineering Research Laboratory, June
1995).

Steele, Guy L. Jr., Common Lisp, The Language, Second Edition (Digital Press, 1990).

USACERL TR 96/58 29

Appendix A: Source Code Listing

This appendix shows actual portions of code from files used during program execution,
including the internal details of the API listed in Appendix B and utility functions
implemented.

ACE Source Code

File: cad01.1sp
Contains system startup functions.

i
;;************************** GENERIC SETUP/STARTUP ROUTINES khkkkkdhkhkkkkhkhkhkkkkkhkkk

i

;;*******i***

;Go to CAD, agent passed is string of agent starting CAD.
;For now: (slot-value 'project-info ‘'cad-system) must equal AUTOCAD-WIN-12 or
MICROSTATION-NT!
(defun go-to-cad (agent &aux cad-system command-line)
;Check CAD system variables.
{(when (check-cad-variables)

;Get some values needed.

(setq cad-system (current-cad-system))

(setq command-line (slot-value 'project-info 'cad-command-line))
;Setup CBrain.

(cbrain-debug t) ;remove after debugged

(cbrain-in-package "GW")
;Setup global variables.

(setq dde::*current-agent* agent)

(setq dde::*current-interp* nil)
;Startup CAD system.

(if (egl 'AUTOCAD-WIN-12 cad-system)

(acad-startup cad-system command-line)
(mstation-startup cad-system command-line))

;Start CBrain.

(cbrain-start)))

;;***
(defun check-cad-variables (&aux result system)
(setq result t)
(setqg system (current-cad-system))
(when (not (frame-p system))
(text (format nil "CAD System Incorrect: ~A, Change in File/Properties." system))
(setg result nil))
(when (not (member system ' (AUTOCAD-WIN-12 MICROSTATION-NT)))
(text (format nil "CAD System ~A Incorrect: Change in File/Properties." system))

30 USACERL TR 96/58

(setqg result nil))
(when (not (probe-file (slot-value 'project-info 'cad-command-line)))
(text (format nil
"CAD Command Line Incorrect, Run File Not Found: ~A, Change in File/Properties."
(slot-value ‘'project-info 'cad-command-line)))
(setqg result nil))
(when (not (directoryp (slot-value 'project-info 'cad-drawing-directory)))
(text (format nil
"CAD Drawing Directory Incorrect, Path File Not Found: ~A, Change in File/
Properties."
(slot-value 'project-info 'cad-drawing-directory)))
(setqg result nil))
result)

;;**i*********************‘k************

;Find out if AutoCAD/Microstation is already running.
(defun cad-running ()
(if (eql 'AUTOCAD-WIN-12 (current-cad-system))

;Autocad

(let ({(cad-chnl (dde:channel-initiate "AutoCAD.DDE" "system")))

(if cad-chnl (progn (dde:channel-terminate cad-chnl) T) NIL))
;Microstation
(let ((cad-chnl (dde:channel-initiate "ustn" "keyin")))

(if cad-chnl (progn (dde:channel-terminate cad-chnl) T) NIL))))
;;***i*****************
;Setup AutoCAD/Microstation that is already running for CADTalk.
(defun setup-running-cad ()

(if (eqgl 'AUTOCAD-WIN-12 (current-cad-system))
;Autocad, have it load ctinit.lsp and run CADTALK command.
(let ((cad-chnl (dde:channel-initiate "AutoCAD.DDE" "system"))})
(when cad-chnl
(dde:channel -execute cad-chnl
(format nil "[(load ~S) CADTALK (init) 1" (build-local "acad.lsp")))
(dde:channel - terminate cad-chnl))) '
;Microstation, have it load ddeclkcn and do cbrain_start.
(let ((cad-chnl (dde:channel-initiate "ustn" "keyin")))
(when cad-chnl
(dde:channel -execute cad-chnl "mdl load mscbrain")
(dde:channel -execute cad-chnl "mdl load cadcmds")
(dde:channel-execute cad-chnl "cbrain_start")
(dde:channel-terminate cad-chnl)))
})

;;******f***i********************
(setq *cad-setup-commands* ())
;: Add a CAD setup command.
(defun cad-setup-command-add (command)
(setq *cad-setup-commands* (reverse (append (list command) (reverse
cad-setup-commands)))))

;;******************************~k**********1\'*************************1\-***********
;; Run the CAD setup commands, called by AutoCAD during initialization.
(defun cad-setup-command-run ()
{(when *cad-setup-commands*
(mapcar #'(lambda (command) (ac-eval-text command)) *cad-setup-commands*))
(cad-setup-command-clear))

;;***

;3 Clear the CAD setup command list.

USACERL TR 96/58

(defun cad-setup-command-clear ()
(setqg *cad-setup-commands* ()))

;R **kkkxxkkkxx4% ROUTINES TO SETUP AUTOCAD FILES FOR EXCURSTION %k ko kkkkkkkkk
H ;*************‘k**‘k**********************
(defun acad-startup (cad-system command-line &aux dr-obj)
(autocad-write-start-lisp cad-system)
(cond
((if (cad-running) (setup-running-cad)))
({when (setqg dr-obj (select-drawobj)) (autocad-run-self command-line dr-obj)))
(t (autocad-run-self command-line nil))))

H ;**‘k**

;; Write the file containing the AUTOLISP code which is run when CADTALK starts up.
(defun autocad-write-start-lisp (frame &aux cadtalk-dir)
(setq cadtalk-dir (frame-slot-default frame ‘'cadtalk-directory))
(with-open-file (file (build-local "acad.lsp") :direction :output)
(format file
"(princ \"\\nReading ACE acad.lsp.\\n\")
~%")
(format file
"(defun C:CADTALK ()
(vmon)
(setvar \"CMDECHO\" 0)
(setqg *windows-acad* ~S)
(command \"MENU\" ~8)
(princ \"Loading Cadtalk...\")
(setq *ace-local* ~S)
(setq *ace-net* ~§)
(setq *cadtalk-directory* ~S)
(setg acad-requests ~8S)
(setqg acad-results ~S)

(setqg donefile ~3)
(load ~8)

(load ~S)

(load ~8)

(princ \"loaded.\")
*nothing¥)

"'96 n

(if (member :GCLISP *features*) t nil)

(namestring (make-path (list cadtalk-dir) (frame-slot-default frame 'menu-file)))
ace-local

ace-netx

cadtalk-dir

(build-local (frame-slot-default frame 'request-file))

(build-local {(frame-slot-default frame 'result-file))

(build-local (pathname-no-ext (frame-slot-default frame 'done-script)))

(namestring (make-cad-mod-path (list "acad") "acadbase.lsp"))
(namestring (make-cad-mod-path (list "acad") "acadutil.lsp"))}
(namestring (make-path (list cadtalk-dir) (frame-slot-default frame ‘con-

trol-file))))
(format file
" (defun S::STARTUP ()
(C:CADTALK)
(init))
~%")
))

32 USACERL TR 96/58

;;***
;; command-line is a string, ex: "d:/acadl2w/acad.exe".
;; drawing is a string.

(defun autocad-run-self (command-line &optional drawing)

(let* ((dir (cd))) ; save the current directory
(cd *ace-local*) ; change to local directory (where acad.lsp made)
(cond
((null drawing) (sys:exec command-line ""))
(t (sys:exec (format nil "~A ~A" command-line drawing) "")))

(cd dir))) ; restore directory

;R Rk kkdddkkkkxdddk ROUTINES TO SETUP MICROSTATION FILES FOR EXCURSION ks

1

;;***
(defun mstation-startup (cad-system command-line &aux dr-obj)
(if (not (cad-running))
(mstation-run-self command-line)
{(setup-running-cad)))

;;**i***-k******************************
;; command-line is a string, ex: "d:/acadl2w/acad.exe".
;; drawing and start-script are strings.
(defun mstation-run-self (command-line)
(let* ((dir (cd)) ; save the current directory
(cad-dir (pathname-device-dir command-line))) ; device and directory of CAD
executable
(cd cad-dir) ; change to the autocad directory

#+:CGCLISP (sys:exec command-line "")

(cd dir))) ; restore directory

File: cadbb.lsp
Contains low-level BB-OBJECT handlers (later specilized for use).

(setf *cad-shape-objects*
' (CAD-OBJECT CAD-SHAPE-OBJECT LINE-CAD-SHAPE-OBJECT
2D-POLYGON-CAD- SHAPE-OBJECT 3D-POLYGON-CAD-SHAPE-OBJECT 3D-CUBE-CAD-SHAPE-OBJECT
3DFACE-CAD- SHAPE-OBJECT))

;**

(define-facet :unit)

;**
(define-handler (BB-OBJECT get-slot-unit) (slot)
(slot-facet self slot :unit))

;**

(define-handler (BB-OBJECT set-slot-unit) (slot new)
(setf (slot-facet self slot :unit) new))

USACERL TR 96/58 33

;; FUNCTIONS CALLED FROM CAD TO TEST/PROCESS DRAWABLE OBJECTS.

;*******ii***
;Routine to test if a frame is drawable.
(defun is-drawable-frame (frame)

(if (stringp frame) (setq frame (read-from-string frame)))

(car (slot-facet frame 'DRAWABLE :default-values)))

;***************************1\'*****************1\'**
;Routine to return all drawable frames, returns a list of strings.
(defun all-drawable ()
(let ((items (mapcar 'gw-name (frame-all-children 'BB-OBJECT))))
(setf items (set-difference items *cad-shape-objects*))
(setf items (mapcan #'(lambda (name) (if (is-drawable-frame name) (list name)
())) items))
{mapcar 'symbol-name items)))

;**
;Routine to do main amount of work in trying to create a drawable object.
(defun process-drawable-object (frame agent)
(if (stringp frame) (setq frame (read-from-string frame)))
(if (stringp agent) (setq agent (read-from-string agent)))
(if (is-drawable-frame frame)
(let ((inst (ace-instance frame)))
(if (and (send-msg inst :cad-create) (send-msg inst :cad-draw))
t
(progn (send-msg inst :delete) nil)))
(progn (print "Frame Is Not Drawable!") nil)))

;**************‘k*********************************i***************************************
;Routine to draw all instances of the given frame.
(defun cad-draw-all (frame)

(if (stringp frame) (setq frame (read-from-string frame)))

(mapcar #'(lambda (inst) (send-msg inst :cad-draw)) (frame-instances frame))
t)

;************i****************************1\'**

(define-handler (BB-OBJECT get-drawable) ()
(slot-value self 'drawable))

;***************'k*************************************i’**********************************
(define-handler (BB-OBJECT set-drawable) (new)
(setf (slot-value self 'drawable) new))

;**
;:Routine to delete a drawable object.
(define-handler (BB-OBJECT delete-drawable-object) ()

(send-msg self :delete))

;***************-»\'**
;Routine to set the VIEWS slot. NOTE: tags is a list of tags, which are strings!
(define-handler (BB-OBJECT set-view-tag) (tags)

(if (eql 'AUTOCAD-WIN-12 (current-cad-system))

USACERL TR 96/58

(send-msg self :set-entity-handle tags)
(send-msg self :set-ms-element-tag tags)))

;***‘k********************************
;Routine to get the VIEWS slot. NOTE: returns a list of tags, which are strings!
(define-handler (BB-OBJECT get-view-tag) ()
(if (eql 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :get-entity-handle)
(send-msg self :get-ms-element-tag)))

;****i***‘k**********************‘k************

;Routine to clear the VIEWS slot.
(define-handler (BB-OBJECT clear-view-tag) ()
(if (eqgl 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :clear-entity-handle)
(send-msg self :clear-ms-element-tag)))

;*****‘\-***i***i****&******************************i
;Routine to set the instance name associated with the tags, name is a string.
(define-handler (BB-OBJECT set-cad-inst-name) (name)
(if (eqgl 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :acad-add-xdata-all name)
(send-msqg self :ms-add-xdata-all name)))

;**************:\v**********i*******************i**************************i*********i*****
;Routine to get the instance name assoclated with the tags.
(define-handler (BB-OBJECT get-cad-inst-name) ()
(if (eql 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :acad-get-xdata)
(send-msg self :ms-get-xdata)))

;*************'k***-k***************i**********
;Called to get initial slot values from CAD system before cad-draw.
(define-handler (BB-OBJECT cad-create) ()
(if (send-msg self :get-drawable)
(if (eql 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :acad-create)
(send-msg self :mstation-create))))

;********‘k****‘k******i’***
;Draw object.
(define-handler (BB-OBJECT cad-draw) ()
(if (send-msg self :get-drawable)
(if (eql 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :acad-draw)
{(send-msg self :mstation-draw))))

;*'k****************1\'*********************i***

;Routine to get editable slots.
(define-handler (BB-OBJECT editable-slots) ()
(mapcar #'(lambda (slot) (list slot (type-of (slot-value self slot))))
(set-difference (instance-all-slots self) (frame-slots 'bb-object))))

;****'l'****i**

USACERL TR 96/58 35

;Routine to set the entity handle within the VIEWS slot. NOTE: handle is a list of
entity handles, which are strings!
(define-handler (BB-OBJECT set-entity-handle) (handle)
(if (1istp handle)
(let ((item (assoc 'ACAD (slot-value self 'views))))
(if item
(setf (slot-value self ‘'views) (subst (cons 'ACAD (list handle)) item
(slot-value self 'views)))
(setf (slot-value self 'views) (acons 'ACAD (list handle) (slot-value self
‘views)))))
(print "Incorrect handle to set-entity-handle, must be a list!")))

;***************************************1\-**1\-*************************i*******************
;Routine to get the entity handle within the VIEWS slot. NOTE: returns a list of entity
handles, which are strings!
(define-handler (BB-OBJECT get-entity-handle) ()

(cadr {(assoc 'ACAD (slot-value self 'views))))

;**
;Routine to clear the entity handle within the VIEWS slot.
(define-handler (BB-OBJECT clear-entity-handle) ()

(setf (slot-value self 'views) (remove (assoc 'ACAD (slot-value self 'views))
(slot-value self 'views))))

;**
;Handler to return instance name for each tag in 1list, returns list.
(define-handler (BB-OBJECT acad-get-xdata) ()

(mapcar #'(lambda (x) (ac-eval " (cdr (entget (handent ,x))))) (send-msg self
:get-view-tag)))

;*******************************1\-*****************************1\—**************************
;Handler to add instance name to CAD object, data is string.
(define-handler (BB-OBJECT acad-add-xdata-all) (data)

(dolist (handle (send-msg self :get-view-tag)) (send-msg self :acad-add-xdata-one
handle data)))

;************************************'k***
;Handler to add instance name to CAD object with the given ID, ID and data are strings.
(define-handler (BB-OBJECT acad-add-xdata-one) (ID data)

(ac-eval " (add-xdata ,ID ,data)))

;*************************1\'**
;Handler to set initial slot values before cad-draw.

;Return t if successful, else ().
(define-handler (BB-OBJECT acad-create) () t)

;****************1\-*****-A-***1\'***********************
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
(define-handler (BB-OBJECT acad-draw) (&aux handle)
(if (setg handle (ac-eval " (insert-text nil , (symbol-name (gw-name self)))))
(progn
(send-msg self :set-view-tag handle)
(send-msg self :acad-add-xdata-all (symbol-name (gw-name self)))
t)
(progn (print "Error drawing object.") ())))

;************************1\-***

;Handler to act when object was moved in AutoCad.
(define-handler (BB-OBJECT acad-object-moved) (offset)

36 USACERL TR 96/58

(print (format nil "Instance ~S moved in AutoCad ~S." (gw-name self) offset)))

;**************-k*************************1\'*a\-****ir*1\'**-k***********************************
;Handler to act when object was erased in AutoCad.
(define-handler (BB-OBJECT acad-object-erased) ()

(print (format nil "Instance ~S erased in AutoCad." (gw-name self))))

;i**********************i************************\\-******\\-********************************
;Handler to act when object was copied in AutoCad.
(define-handler (BB-OBJECT acad-object-copied) ()

(print (format nil "Instance ~S copied in AutoCad." (gw-name self))))

;i*****v\-***i*********
;Handler to highlight an object in AutoCad.
(define-handler (BB-OBJECT acad-highlight) ()

(dolist (handle (send-msg self :get-view-tag)) (ac-eval ~(redraw (handent ,handle)
3))))

;**

;Handler to highlight an object in AutoCad.
(define-handler (BB-OBJECT acad-unhighlight) ()

(dolist (handle (send-msg self :get-view-tag)) (ac-eval °(redraw (handent ,handle)
4)})))

;**

;Handler to change the color of an object in AutoCad.
;c is an integer between 0 and 255 (both inclusive).
(define-handler (BB-OBJECT set-color) (c)

(ac-eval " (set-color (quote , (send-msg self :get-view-tag)) ,c)))

;***a\-********
;Handler to get the color of an object in AutoCad.
;returns a list of color numbers or nil depending on the colors assigned to each of the
handles in the list.
(define-handler (BB-OBJECT get-color) ()

(ac-eval " (get-color (quote , {send-msg self :get-view-tag)))))

;routine to turn a list of symbols into a list of strings
(defun make-list-string (lst)

(apply 'string-append (mapcar #'(lambda (x) (string-append (write-to-string x} " "))
(coerce 1lst 'list))))

;routine to turn a list of lists into a list of strings
(defun list-make-list-string (lst &aux temp temp2)
(setqg temp {mapcar 'make-list-string lst) temp2 "")
(dolist (x temp) (setq temp2 (string-append temp2 x)}))
temp2)

;***'k**********************************
;Routine to set the element tag within the VIEWS slot. NOTE: tag is a list.
(define-handler (BB-OBJECT set-ms-element-tag) (tag)
(if (listp tag)
(let ((item (assoc 'USTN (slot-value self 'views))))
(if item

USACERL TR 96/58 : 37

(setf (slot-value self ‘'views) (subst {cons 'USTN (list tag)) item
(slot-value self 'views)))
(setf (slot-value self 'views) {(acons 'USTN (list tag) (slot-value self
‘views)))))
(print "Incorrect tag to set-ms-element-tag, must be a list!")))

;********************************i**********************************'*********************
;Routine to get the element tag within the VIEWS slot. NOTE: returns a list of tags,
which are numbers!
(define-handler (BB-OBJECT get-ms-element-tag) ()

(cadr (assoc 'USTN (slot-value self 'views))))

;**
;Routine to clear the element tag within the VIEWS slot.
(define-handler (BB-OBJECT clear-ms-element-tag) ()

(setf (slot-value self 'views) (remove (assoc 'USTN (slot-value self ‘'views))
(slot-value self 'views))))

;****************-k*****i*********i***
;Handler to return instance name for each tag in list, returns list.

(define-handler (BB-OBJECT ms-get-xdata) ()
(mapcar #'(lambda (x) (ac-eval-text (format NIL "get_xdata ~A" x))) (send-msg self

:get-view-tag)))

;***i*i*******************-k**
;Handler to add instance name to CAD object, data is string.
(define-handler (BB-OBJECT ms-add-xdata-all) (data)

(dolist (handle (send-msg self :get-view-tag)) (send-msg self :ms-add-xdata-one handle
data)))

;*i***‘k******i’***i’*******
;Handler to add instance name to CAD object with the given ID, ID and data are strings.
(define-handler (BB-OBJECT ms-add-xdata-one) (ID data)

(ac-eval-text (format NIL "set_xdata ~A ~A" ID data)))

;**
;Handler to set initial slot values before cad-draw.

;Return t if successful, else ().

(define-handler (BB-OBJECT mstation-create) () t)

;**
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
(define-handler (BB-OBJECT mstation-draw) (&aux tag)
(if (setq tag (ac-eval-text (format NIL "insert text 0 0 0 ~S ~S" (gw-name self)
(gw-name self))))
(progn
{send-msg self :set-view-tag tag)
t)
(progn (print "Error drawing object.") ())))

File: cadshape.lsp
Contains base CAD shape definitions, file added to ACE library for use.

38 USACERL TR 96/58

(DEFINE-FRAME CAD-OBJECT

(:is BB-OBJECT)

(DRAWABLE :default-values (t))

(ORIGIN :default-values ((0 0 0))
:when-modified (cad-update-linked))

(ROTATION :default-values ((0 0 0))
:when-modified (cad-update-linked))

(CAD_COLOR :default-values (1) :no-inference T)

(CAD_LAYER :default-values (0) :no-inference T)

;routine to return a list of items that are connected to the given inst
(defun to-items (inst)
(mapcar #'(lambda (slink) (list (slink-from slink) (slink-type slink)))
{send-msg inst :get-slinks-to)))

;routine to return a list of items that are connected from the given inst
(defun from-items (inst)
(mapcar #'(lambda (slink) (list (slink-to slink) (slink-type slink)))
(send-msg inst :get-slinks-from)))

;routine to return a list of items with has-part links in the given link-list;
;link-1list comes from to-parts or from-parts above (ex: (has-part-items (to-items
'west_wall)))
(defun has-part-items (link-list)
(let ((result (})))
(mapcar
#' (lambda (slink) (if (eqgl 'has-part (cadr slink))
(setf result (append (list (car slink)) result)) result))
link-1list)
result}))

;routine to return a list of items with cad links in the given link-list;
;link-1ist comes from to-parts or from-parts above (ex: (cad-linked-items (to-items
‘west_wall)))
; {NOTE: USING HAS-PART AS THE CAD-LINK!)
{(defun cad-linked-items (link-list)
(let ((result ()))
(mapcar
#' (lambda (slink) (if (eql 'has-part (cadr slink))
(setf result (append (list (car slink)) result)) result))
link-1list)
result))

;; WHEN MODIFIED FUNCTIONS

(setf *cad-update* t)
(setf *cad-update-items* ())

USACERL TR 96/58

39

(defun cad-update-save-inst (inst)
(if (not (member inst *cad-update-items*))
(setf *cad-update-items* (append (list inst) *cad-update-items*))))

;when-modified routine - USE BY CREATING MODIFIED HANDLER!
(defun slot-modified (inst slot old new)
(send-msg inst :modified inst slot old new))

;when-modified routine - DOES NOT REDRAW CAD-LINKED-ITEMS!
(defun cad-update (inst slot old new)
(declare (ignore slot new))
(if *cad-update*
(if (send-msg inst :get-view-tag) (send-msg inst :cad-draw))
(cad-update-save-inst inst)))

;when-modified routine - DOES REDRAW CAD-LINKED-ITEMS!
(defun cad-update-linked (inst slot old new)
(declare (ignore slot new))
(if *cad-update*
{(progn
(if (send-msg inst :get-view-tag) (send-msg inst :cad-draw))
;redraw all connected items if drawable
(if (send-msg inst :get-drawable)
(mapcar #'(lambda (inst2) (cad-update-linked inst2 nil nil nil))
(cad-linked-items (from-items inst)))))
(cad-update-save-inst inst)))

;i’****‘k**tk*******
;Routine to setup geometry settings.
(define-handler (CAD-OBJECT cad-setup) ()
(if (eqgl 'AUTOCAD-WIN-12 (current-cad-system))
(send-msg self :acad-cad-setup)
(send-msg self :mstation-cad-setup)))

;**i*************************************

;Routine called when a slot is modified.
(define-handler (CAD-OBJECT modified) (inst slot old new) t)

;***i—********************
;Routine to setup layer and color before drawing.
(define-handler (CAD-OBJECT acad-cad-setup) ()
(ac-eval ° (progn
(setvar "CMDECHO" 0)
(command ".LAYER" "M" , (princ-to-string (slot-value self 'cad_layer))
"C" , (princ-to-string (slot-value self 'cad_color)) "" "w)
(setvar "CMDECHO" 1))))

l-***************************i***-k****‘k***

;Routine to erase CAD object and clear view slot.

40 USACERL TR 96/58

(define-handler (CAD-OBJECT acad-cleanup) (&aux handle)
(when (setq handle (car (send-msg self :get-view-tag)))
(ac-eval " (if (handent ,handle) (entdel (handent ,handle))}))
(send-msg self :clear-view-tag)))

;***‘k****

;Routine to speed-up creation process, does combination of
;creation routine, adding xdata, and setting of view tag in GW.
(define-handler (CAD-OBJECT acad-build) (creation &aux ent)
(send-msqg self :cad-setup)
(if (setf ent (ac-eval °(progn ,creation (add-xdata (entlast) ,(format nil "~S"
(gw-name self)))
(entlast))))
(send-msg self :set-view-tag (list (string-left-trim '"H-" (string ent))))))

;**
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN HAS BEEN SET!
(define-handler (CAD-OBJECT acad-draw) ()
(if (slot-value self 'origin)
(progn
(send-msg self :acad-cleanup)
(send-msg self :acad-build ° (insert-text (quote , (slot-value self 'origin))
, (symbol-name (gw-name self))))
t)))

;***************i'k***1\-***********
(define-handler (CAD-OBJECT acad-object-moved) (offset)

(print (format nil "~S moved .in AutoCad ~S." (gw-name self) offset))
;update origin slot - when modified called

(setf (slot-value self 'origin) (add-points (slot-value self ‘origin) offset))

t)

;**
(define-handler (CAD-OBJECT acad-object-erased) ()

(print (format nil "Instance ~S erased in AutoCad." (gw-name self)))

(send-msg self :delete))

;*****************i-**-k***
;Routine to setup layer and color before drawing.
(define-handler (CAD-OBJECT mstation-cad-setup) ()

(ac-eval-text (format NIL "LV=~S" (slot-value self 'cad_layer)))

(ac-eval-text (format NIL "CO=~S" (slot-value self ‘cad_color))))

;*************‘k***~k****************************
;Routine to erase CAD object and clear view slot.
(define-handler (CAD-OBJECT mstation-cleanup) (&aux handle)
(when (setqg handle (car (send-msg self :get-view-tag)))
(ac-eval-text (format NIL "delete_gw_obj ~A" handle))
(send-msqg self :clear-view-tag)))

;***i**********

;Routine to speed-up creation process, does combination of

USACERL TR 96/58 41

;creation routine, adding xdata, and setting of view tag in GW.
(define-handler (CAD-OBJECT mstation-build) (creation &aux tag)
(send-msg self :cad-setup)
(if (setf tag (ac-eval-text creation))
(if (setf tag (ac-eval 'get_tag))
(send-msg self :set-view-tag (list tag)))))

;***i**********************************?*i*********
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
(define-handler (CAD-OBJECT mstation-draw) (&aux tag)
(if (slot-value self 'origin)
(progn .
(send-msg self :mstation-cleanup)
(send-msg self :mstation-build (format NIL "insert_text ~A ~S ~S"
(make-list-string (slot-value self 'origin)) (gw-name self) (gw-name self)))
t)))

;; BELOW IS THE CODE FOR OBJECTS THAT WILL BASED ON THE CAD HEIRARCHY METHODOLOGY (LCS
MODEL)

;; DEFINE A FACET FOR USE WITH CAD-SHAPE-OBJECTS (FACET WILL BE USED WITH MAP-TO WHEN
MODIFIED)

;********************'k**********dr*'k****'k'k*****************-lr*'k***************************'k

(define-facet :map-to-slot)

;**

(define-handler (CAD-SHAPE-OBJECT get-map-to-slot) (slot)
(slot-facet self slot :map-to-slot))

;********************'k********************************'ll**********************************

(define-handler (CAD-SHAPE-OBJECT set-map-to-slot) (slot new)
(setf (slot-facet self slot :map-to-slot) new))

;**********************************i’******************'k**********************************
;when-modified function that will be used to map a slot value to another slot value
(defun map-to (inst slot old new)

{(declare (ignore old))

(setf (slot-value inst (send-msg inst :get-map-to-slot slot)) (car new)))

(DEFINE-FRAME CAD-SHAPE-OBJECT
(:is CAD-OBJECT)

42

USACERL TR 96/58

;conversion routines
(defun deg-to-rad (degree) (* degree 0.0174532925199432946))
(defun rad-to-deg {radian) (* radian 57.2957795130823229))

;access routines

(defun ptx (pt) (nth 0 pt))
(defun pty (pt) (nth 1 pt))
(defun ptz (pt) (nth 2 pt})

;routine to test if two points are equal with form (x y 2z)
; (equal-points "(1 1 1) '(2 2 2))
; (equal-points '#(1 1 1) '#(2 2 2))
(defun equal-points (ptl pt2)
(setq ptl (coerce ptl 'list))
(setq pt2 (coerce pt2 'list))
(and (eql (ptx pt2) (ptx ptl)) (eql (pty pt2) (pty ptl)) (eql (ptz pt2) (ptz ptl))))

;routine to add two points with form (x y z)
; (add-points '{(1 1 1) '(2 2 2))
; (add-points '#(1 1 1) '#(2 2 2))
(defun add-points (ptl pt2)
(setq ptl (coerce ptl 'list))
(setq pt2 (coerce pt2 'list))
(list (+ (ptx ptl) (ptx pt2)) (+ (pty ptl) (pty pt2)) (+ (ptz ptl) (ptz pt2))))

;routine to minus two points with form (x y 2z)
; (minus-points '(1 1 1) "(2 2 2))
;{minus-points '#(1 1 1) '#(2 2 2))
(defun minus-points (ptl pt2)
(setqg ptl (coerce ptl 'list))
(setq pt2 (coerce pt2 'list))
(list (- (ptx ptl) (ptx pt2)) (- (pty ptl) (pty pt2)) (- (ptz ptl) (ptz pt2))})

;routine to get the distance between two points with form (x y z)
; (distance-between-points '(1 1 1) '(2 2 2))
; (distance-between-points '#(1 1 1) '#(2 2 2))
(defun distance-between-points (ptl pt2)

(setqg ptl (coerce ptl 'list))

(setqg pt2 (coerce pt2 'list))

{sgrt (+ (expt (- (ptx pt2) (ptx ptl)) 2)

(expt (- (pty pt2) (pty ptl)) 2) (expt (- (ptz pt2) (ptz ptl)) 2))))

;routine to get the angle between two points with form (x y z) (returns degrees)
; (angle-between-points '(1 1 1) '(2 2 2))
; (angle-between-points '#(1 1 1) '#(2 2 2))
(defun angle-between-points (ptl pt2 &aux base)
(if (not (equal-points ptl pt2))
(progn
(setq ptl (coerce ptl 'list))
(setg pt2 (coerce pt2 'list))
;make base value
(setq base
(rad-to-deg (acos (/ (- (ptx pt2) (ptx ptl)) (distance-between-points ptl
pt2)))))
(if (<= (pty ptl) (pty pt2))
base

USACERL TR 96/58 43

(- 0.0 base)))
0.0))

;compute-polygon-area
;Takes a list of 3D points (z values are ignored).
;For example, a polygon with 3 vertices the area:
sA = 1/2(yl + y2) (x2 - x1) +
; 1/2(y2 + y3) (x3 - x2) +
i 1/2(y3 + y1) (x1 - x3)
;NOTE: Assumes that the list contains points in order. Error checking to ensure
;this is not done for efficiency sakes.
(defun compute-polygon-area (pts-list)
(let ((result 0)
(curpos 0)
(len (length pts-list)))
(loop
(when (>= curpos len) (return (abs result)))
(let ((ptl (nth curpos pts-list))
(pt2 (if (= curpos (1- len)) (car pts-1list) (nth (1+ curpos) pts-list))))
(setf result (+ result (* 0.5 (+ (pty ptl) {(pty pt2)) (- (ptx pt2) (ptx ptl)))))
(incf curpos)))))

;places a point vector into a 4x1 matrix for use in mult-4Ilmatrix
(defun make-point-matrix (point)
(let ((temp (make-array '(4 1))))
(setf (aref temp 0 0) (nth 0 (coerce point 'list)))
(setf (aref temp 1 0) (nth 1 (coerce point 'list)))
(setf (aref temp 2 0) (nth 2 (coerce point 'list)))
(setf (aref temp 3 0) 1)
temp))

(defun mult-33matrix (matl mat2 &aux mat3 temp)
(setf mat3 (make-array '(3 3)))
{(do ((1 0 (+ 1 1))) ((=1 3))
(do ((3J 0 (+ 3 1))) ((=3 3))
(setf temp 0)
(do ((k 0 (+ k 1})) ({(= k 3))
(setf temp (+ temp (* (aref matl i k) (aref mat2 k j)))))
(setf (aref mat3 1 j) temp)))
mat3)

;multiplies two 4x4 matrices and returns the resultant 4x4
(defun mult-44matrix (matl mat2 &aux mat3 temp)
(setf mat3 (make-array '(4 4)))
(do ((i 0 (+ 1 1))) ((= 1 4))
(do ((J 0 (+ 3 1))) ((=3 4))
(setf temp 0)
(do ((k 0 (+ k 1))) ((= k 4))
(setf temp (+ temp (* (aref matl i k) (aref mat2 k j)))))
(setf (aref mat3 i j) temp)))
mat3)

;matl is 4x4, mat2 is 4x1, result is 4xl
(defun mult-41lmatrix (matl mat2 &aux mat3 temp)
(setf mat3 (make-array '(4 1)))

44 . USACERL TR 96/58

(do ((1 0 (+ i 1))) ((=1 4))
(do ((J 0 (+ 3 1))) ((=3 1))
(setf temp 0)
(do ((k 0 (+ k 1))) ((= %k 4))
(setf temp (+ temp (* (aref matl i k) (aref mat2 k j)))))
(setf (aref mat3 i j) temp)))
mat3)

(defun ludcmp (a n indx 4 &aux vv big temp sum dum imax)
(setf 4 1.0)
(setf vv (make-array n))
(setf indx (make-array n))

;get largest value in a row
(do ((1 0 (+ 1 1))) ((=1 n))
(setf big 0.0)
(do ((J O (+ 3 1)) ((=3 m))
(if (> (setf temp (abs (aref a i j))) big) (setf big temp)))
(if (= big 0.0) (print "error: singular matrix in ludcmp"))
(setf (aref vv i) (/ 1.0 big)))

;loop through columns
(do ({3 0 (+ 3 1})) ((= 3 m))

;go down rows until diagonal element
(do ((i 0 (+ 1 1))) ((not (< i 3)))
(setf sum (aref a i j))
(do ((k 0 (+ k 1))) ((not (< k 1)))
(setf sum (- sum (* (aref a i k) (aref a k j)))))
(setf (aref a i j) sum))

(setf big 0.0)
;start at the diagonal element
(do ((1i j (+ i 1))) ((= 1 n))
(setf sum (aref a 1 j))
(do ((k 0 (+ k 1))) ((not (< k 3)))
(setf sum (- sum (* (aref a i k) (aref a k 3)))))
(setf (aref a i Jj) sum)
(if (>= (setf dum (* (aref vv i) (abs sum))) big)
(progn (setf big dum) (setf imax i))))

;interchange rows
(if (/= j imax)
(progn
(do ({(k 0 (+ k 1)})) ((= k n))
(setf dum (aref a imax k))
(setf (aref a imax k) (aref a j k))
(setf (aref a j k) dum))
(setf d (- 0 d))
(setf dum (aref vv imax))
(setf (aref vv imax) (aref vv j))
(setf (aref vv j) dum)))

(setf (aref indx j) imax)
(if (= (aref a j j) 0.0) (setf (aref a j 3j) 0.000000000000000000000001))
(if (/=3 (- n 1))
(progn
(setf dum (/ 1.0 (aref a j j)))
(do ((i (+ 3 1) (+ 1 1))) ({(=1 n))
(setf (aref a i J) (* (aref a i j) dum)))))

USACERL TR 96/58

45

)
(list a indx 4d)
)

(defun lubksb (a n indx b &aux ii ip sum)
(setf ii -1)
(do ((1i 0 (+ i 1))) ((= 1 n))
(setf ip (aref indx 1i))
(setf sum (aref b ip))
(setf (aref b ip) (aref b 1))
(if (/= ii -1)
(do ((J i1 (+ 3 1))) ((not (<=3 (- i 1))))
(setf sum (- sum (* (aref a i j) (aref b j)))))
(if (/= sum 0.0) (setf ii 1i)))
(setf (aref b i) sum))

(do ((1i (- n 1) (-1 1))) ((<1i 0))
(setf sum (aref b 1))
(do ((J (+ 1 1) (+ 3 1))) ({=3 n))
(setf sum (- sum (* (aref a i j) (aref b j)))))
(setf (aref b i) (/ sum (aref a i I))))

;get inverse of given matrix
(defun matinv (a n &aux result col y indx 4d)
(setf result (ludcmp a n nil nil))
(setf col (make-array n))
(setf y (make-array " (,n ,n)))
(do ((J 0 (+ 3 1))) ((= 3 n))
(do ((1 0 (+ i 1))) ((= i n)) (setf (aref col i) 0.0))
(setf (aref col j) 1.0)
(setf col (lubksb a n (nth 1 result) col))
(do ((1 0 (+ i 1))) ((= i n)) (setf (aref y i j) (aref col 1i))))

;**
(define-handler (CAD-SHAPE-OBJECT get-reference-inst) (&aux items)
(if (setq items (cad-linked-items (to-items self))) (car items)))

;******************************ir***********************************ii********************
;places instance origin and rotation into a 4x4 matrix
(define-handler (CAD-SHAPE-OBJECT build-matrix) ()
(let ((temp (make-array '(4 4)))
angle)

(setf (aref temp 0 0) 1)
(setf (aref temp 1 1) 1)
(setf (aref temp 2 2) 1)
(setf (aref temp 3 3) 1)

;put in origin
(setf (aref temp 0 3) (nth 0 (coerce (slot-value self 'origin) 'list)))
(setf (aref temp 1 3) (nth 1 (coerce (slot-value self 'origin} 'list)))
(setf (aref temp 2 3) (nth 2 (coerce (slot-value self 'origin) 'list)))
;put in z rotation

46 USACERL TR 96/58

(setf angle (deg-to-rad (nth 2 (coerce (slot-value self 'rotation) 'list))))
(setf (aref temp 0 0) (cos angle))

(setf (aref temp 1 1) (cos angle))

(setf (aref temp 0 1) (- 0.0 (sin angle)))

(setf (aref temp 1 0) (sin angle))
;return temp

temp))

;**
;gets the transformation matrix of an instance - traces down through linked items
(define-handler (CAD-SHAPE-OBJECT get-matrix) ()
(if (setqg temp (send-msg self :get-reference-inst))
(mult-44matrix (send-msg temp :get-matrix) (send-msg self :build-matrix))
(send-msg self :build-matrix)))

'-**

(define-handler (CAD-SHAPE-OBJECT get-relative-origin) ()
(slot-value self 'origin))

;**
;get an objects absolute origin - if there 1is a reference object, then get it's
transformation
;matrix and multiply our origin by that
(define-handler (CAD-SHAPE-OBJECT get-absolute-origin) (&aux temp)
(if (setg temp (send-msg self :get-reference-inst))
(let ((result (mult-4lmatrix
(send-msg temp :get-matrix) (make-point-matrix (slot-value self
‘origin))}))
(list {(aref result 0 0) (aref result 1 0) (aref result 2 0)))
(send-msg self :get-relative-origin)))

;**

(define-handler (CAD-SHAPE-OBJECT set-relative-origin) (new)
(setf (slot-value self 'origin) new))

;**
;set an objects absolute origin - if there is a reference object, then get it's
transformation
;matrix and multiply the new origin by the inverse of that
(define-handler (CAD-SHAPE-OBJECT set-absolute-origin) (new &aux temp)
(if (setqg temp (send-msg self :get-reference-inst))
(let ((result (mult-4lmatrix
(matinv (send-msg temp :get-matrix) 4) (make-point-matrix new))))
(send-msg self :set-relative-origin
(list (aref result 0 0) (aref result 1 0) (aref result 2 0))))
(send-msg self :set-relative-origin new)))

;***i**********

(define-handler (CAD-SHAPE-OBJECT get-relative-rotation) ()
(slot-value self 'rotation))

;**********************************‘k***1\-*
(define-handler (CAD-SHAPE-OBJECT get-absolute-rotation) (&aux temp)
(if (setqg temp (send-msg self :get-reference-inst))
(add-points (send-msg self :get-relative-rotation) (send-msg temp
:get-absolute-rotation))
(send-msg self :get-relative-rotation)))

;**

(define-handler (CAD-SHAPE-OBJECT set-relative-rotation) (new)
(setf (slot-value self 'rotation) new))

USACERL TR 96/58 47

;************i(**‘k**************************
(define-handler (CAD-SHAPE-OBJECT set-absolute-rotation) (new &aux temp)
(if (setqg temp (send-msg self :get-reference-inst))
(send-msg self :set-relative-rotation
(minus-points new (send-msg temp :get-absolute-rotation}))
(send-msg self :set-relative-rotation new)))

;************************************‘k********************************‘k*************t****

;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN HAS BEEN SET!
(define-handler (CAD-SHAPE-OBJECT acad-draw) ()
(if (slot-value self 'origin)
(progn
(send-msg self :acad-cleanup)
(send-msg self :acad-build " (insert-text (quote , (send-msg self
:get-absolute-origin))
, (symbol-name (gw-name self))))
| t)))

;**

(print (format nil "~S moved in AutoCad ~S." (gw-name self) offset))
;update origin slot - when modified called

(send-msg self :set-absolute-origin (add-points (send-msg self :get-absolute-origin)
offset))

t)

|
|
(define-handler (CAD-SHAPE-OBJECT acad-object-moved) (offset)
|
|
1
|

" ;****************************1\-*******************1\'***************************************
l :Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
’ ;Return t if successful, else ().
(define-handler (CAD-SHAPE-OBJECT mstation-draw) (&aux tag)
’ (if (slot-value self 'origin)
| (progn
| (send-msg self :mstation-cleanup)
: (send-msg self :mstation-build (format NIL "insert_ text ~A ~§ ~S"
‘ (make-list-string (send-msg self :get-absolute-origin)) (gw-name self)
(gw-name self)))
£)))

(DEFINE-FRAME LINE-CAD-SHAPE-OBJECT

USACERL TR 96/58

(:is CAD-SHAPE-OBJECT)

(END
:doc-string "End of line relative to origin."
:when-modified (cad-update-linked))

;***
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN, ROTATION, AND END HAS BEEN SET!
(define-handler (LINE-CAD-SHAPE-OBJECT acad-draw) (&aux true-origin)
(if (and (slot-value self 'origin) (slot-value self 'rotation) (slot-value self 'end))
(progn

(send-msg self :acad-cleanup)

(setf true-origin (send-msg self :get-absolute-origin))

(send-msg self :acad-build (append ° (insert-line (guote ,true-origin)

, (add-points true-origin (slot-value self 'end)))))

(DEFINE-FRAME 2D-POLYGON-CAD-SHAPE-OBJECT
(:is CAD-SHAPE-OBJECT)
(CORNERS
:doc-string “"Corners of polygon relative to origin."
:when-modified (cad-update))

;**1\-****1\'*******i**k*****
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD. .
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN, ROTATION, AND CORNERS HAVE BEEN SET!
(define-handler (2D-POLYGON-CAD-SHAPE-OBJECT acad-draw) (&aux true-origin mod-corners)
(if (and (slot-value self ‘'origin) (slot-value self ‘'rotation) (slot-value self
'corners))
(progn
(send-msg self :acad-cleanup)
(setf true-origin (send-msg self :get-absolute-origin))
;convert relative corners to absolute
(setf mod-corners
(mapcar #'(lambda (pt) (add-points true-origin pt)) (slot-value self
'corners)))
(send-msg self :acad-build@ (append " (insert-2d-polygon (quote ,mod-corners))})
£)))

(DEFINE-FRAME 3D-POLYGON-CAD-SHAPE-OBJECT
(:is CAD-SHAPE-OBJECT)
(HEIGHT
:when-modified (cad-update))

USACERL TR 96/58 49

(CORNERS
:doc-string "Corners of polygon relative to origin."
:when-modified (cad-update))

:*******i**'lr***********************i***
;set the corners slot
(define-handler (3D-POLYGON-CAD-SHAPE-OBJECT set-absolute-corners) (ptList &aux
true-origin) ’

(setf true-origin (send-msg self :get-absolute-origin))

(setf (slot-value self 'corners) {(mapcar #'(lambda (pt) (minus-points pt true-origin))
ptList)))

;*******1\'*!\'***i**********
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN, ROTATION, CORNERS, AND HEIGHT HAVE BEEN SET!
(define-handler (3D-POLYGON-CAD-SHAPE-OBJECT acad-draw) (&aux true-origin mod-corners)
(if (and (slot-value self 'origin) (slot-value self 'rotation)
(slot-value self 'corners) (slot-value self 'height))
(progn
{send-msg self :acad-cleanup)
(setf true-origin (send-msg self :get-absolute-origin))
;convert relative corners to absolute
(setf mod-corners
(mapcar #'(lambda (pt) (add-points true-origin pt)) (slot-value self
‘corners)))
(send-msg self :acad-build (append ' (insert-3d-polygon (quote ,mod-corners)
, (slot-value self 'height))))
t)))

(define-handler (3D-POLYGON-CAD-SHAPE-OBJECT mstation-draw) (&aux true-origin mod-corners
tag)
(if (and (slot-value self 'origin) (slot-value self 'rotation)
(slot-value self 'corners) (slot-value self 'height))
(progn
(send-msg self :mstation-cleanup)
(setf true-origin (send-msg self :get-absolute-origin))
;convert relative corners to absolute
(setf mod-corners
(mapcar #'(lambda (pt) (add-points true-origin pt)) (slot-value self
'corners)))
(send-msg self :mstation-build (format NIL "insert_3d polygon ~A ~A ~S ~S"
(length mod-corners)
(list-make-1list-string mod-corners)
(slot-value self 'height)
(gw-name self)))

(DEFINE-FRAME 3D-CUBE-CAD-SHAPE-OBJECT
(:is CAD-SHAPE-OBJECT)
(X_LENGTH
:doc-string "X length relative to origin."
:when-modified (cad-update))

50 USACERL TR 96/58

(Y_LENGTH
:doc-string "Y length relative to origin."
:when-modified (cad-update))

(Z_LENGTH
:doc-string "Z length relative to origin."
:when-modified (cad-update))

;*v\v*********************i**
;Handler responsible for drawing object, setting entity handle, and linking to object in

CAD.
;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN, ROTATION, X_LENGTH, Y_LENGTH, AND Z_LENGTH HAS BEEN SET!
(define-handler (3D-CUBE-CAD-SHAPE-OBJECT acad-draw) ()
(if (and (slot-value self 'origin) (slot-value self ‘'rotation)
(slot-value self 'x_length) (slot-value self 'y_length) (slot-value self
'z_length))
(progn
(send-msg self :acad-cleanup)
(send-msg self :acad-build (append ~ (insert-3dcube-main
(quote , (send-msg self :get-absolute-origin))
, {(slot-value self 'x_length)
, (slot-value self 'y_length)
, (slot-value self 'z_length)
,{nth 2 (send-msg self :get-absolute-rotation)))))
£)))

(define-handler (3D-CUBE-CAD-SHAPE-OBJECT mstation-draw) (&aux tag)
(if (and (slot-value self 'origin) {(slot-value self 'rotation)
(slot-value self 'x_length) (slot-value self 'y_length) (slot-value self
'z_length))
(progn
(send-msg self :mstation-cleanup)
(send-msg self :cad-setup)
(send-msg self :mstation-build (format NIL "insert_3d_cube ~A ~§ ~S§ ~S ~S ~S"
(make-list-string (send-msg self :get-absolute-origin))
(slot-value self 'x_length)
(slot-value self 'y_length)
(slot-value self 'z_length)
(nth 2 (send-msg self :get-absolute-rotation))
(gw-name self)))

(DEFINE-FRAME 3DFACE-CAD-SHAPE-OBJECT
(:is CAD-SHAPE-OBJECT)
(HEIGHT
:when-modified (cad-update))
(END
:doc-string "End of line relative to origin."
:when-modified (cad-update-linked))

;***********'k**
;Handler responsible for drawing object, setting entity handle, and linking to object in
CAD.

USACERL TR 96/58

;Return t if successful, else ().
;NOTE: ASSUMING THAT ORIGIN, ROTATION, AND END HAS BEEN SET!
{(define-handler (3DFACE-CAD-SHAPE-OBJECT acad-draw) {(&aux true-origin)
(if (and (slot-value self 'origin) (slot-value self 'rotation)
(slot-value self 'end) (slot-value self ‘'height))
(progn
(send-msg self :acad-cleanup)
(setf true-origin (send-msg self :get-absolute-origin))
(send-msg self :acad-build (append ° (insert-3dface
(quote ,true-origin) , (add-points true-origin (slot-value self 'end))
, (slot-value self 'height))))
£)))

CAD Sytem Source Code

AutoCAD

File: acadctrl.lsp
Contains basic extended entity data functions and object display functions.

;;*i***

;;***

(defun c:all-xdata () (entget (car (entsel)) ({(list "*")))

;;***
;Select and print extended entity data of an entity.
(defun c:ct-data (/ entity xdata)
(if (setq entity (car (entsel "Select object: "}))
(if (setqg xdata (get-xdata entity))
(progn (princ "\nExtended entity data for CADtalk is: ") (print xdata})
(princ "\nNo extended entity data for CADtalk\n"))
(princ "\nNo Object Selected."))
nothing)

;;**i********************i*

;Add extended entity data to given entity, inst_name is text string of data.
(defun add-xdata (ename inst_name)

(plist-put ename "INST-NAME" inst_name)

t)

;;****i***i

;Get extended entity data of given entity.
(defun get-xdata (ename)
(plist-get ename "INST-NAME"))

; ;**i*******i******

;; Utility routines called by GW to draw an object

;; NOTE: Routines MUST return entity handle within a list!

;;***

; (defun *error* (msg) *nothing*)

52

USACERL TR 96/58

; (setq *error* nil)

;;***
;returns list of entity handle - requires some user interaction
; {(insert-text '(5 5 0) "hi")
(defun insert-text (ptl text / cmd_var)

(if (null ptl) (setq ptl pause))

(setq cmd_var (getvar "CMDECHO"))

(setvar "CMDECHO" 1)

{command "_.TEXT" ptl pause pause text)

(setvar "CMDECHO" cmd_var)
;Return values.

(list (hanlast)))

;;************************************i************************************
;returns list with: (<handle list> <start pt list> <end pt list>)
; (insert-line '(0 0 0) ' (10 10 0))
(defun insert-line (ptl pt2 / cmd_var)

(if (null ptl) (setqg ptl (getpoint "From Point:")))

(if (null pt2) (setqg pt2 (getpoint ptl "\nTo Point:")))

(setq cmd_var (getvar "CMDECHO"))

(setvar "CMDECHO" 1)

(command "_.LINE" ptl pt2 "")

(setvar "CMDECHO" cmd_var)
;Return values.

(list (list (hanlast)) ptl pt2))

;;***

;returns entity handle of polyline
; (insert-2d-polygon '((13000 -1800 0) (18000 -5900 0) (13000 -8000 0)))
(defun insert-2d-polygon (corners / cmd_var)
(setq cmd_var (getvar "CMDECHO"))
(setvar "CMDECHO" 0)
(command "_.PLINE")
(foreach pt corners (command pt))
(command "cl")
(setvar "CMDECHO" cmd_var)
;Return values.
(1ist (hanlast)))

;;**********************************i*i*************i*******i**************
;returns entity handle of polyline

; (insert-3d-polygon '((13000 -1800 0) (18000 -5900 0) (13000 -8000 0)) '500)
(defun insert-3d-polygon (corners height / i numCorners comm cmd_var)

(defun add-height ({(corners height)
(if (null corners)
nil
(cons (list (caar corners) (cadar corners) (+ (caddar corners) height))
(add-height (cdr corners) height))))

(if (null height) (setqg height (getint "Enter height: ")))

(setq numCorners (length corners))
;setup points
(setg comm (append '(command) '("_.PFACE") corners (add-height corners height)
;add lower face
(setg 1 1)
(repeat numCorners
(setq comm (append comm (list 1i)))
(setg 1 (+ 1 1)))

v(lln)))

USACERL TR 96/58

53

(setq comm (append comm '("")))
;add upper face
(setq 1 (+ 1 numCorners))
(repeat numCorners
(setq comm (append comm (list i)))
(setg i (+ 1 1)))
(setq comm (append comm '("")))
;add side faces
(setg 1 1)
(repeat numCorners
(if (= i numCorners)
(setq comm (append comm (list i 1 (+ 1 numCorners) (+ 1 numCorners))

(setq comm (append comm (iist i (+ i 1) (+ i 1 numCorners) (+ i numCorners))

trm)
(setg i (+ 1 1)))
;add final return
(setqg comm (append comm '(""}))
;quote points

(setq comm (mapcar '(lambda (x) (if (listp x) (cons 'quote (list x)) X)) comm))

;evaluate command
(setq cmd_var (getvar "CMDECHO"))
(setvar "CMDECHO" 0)
{(eval comm)
(setvar "CMDECHO" cmd_var)
;Return values.
(1ist (hanlast))

3 ;***

;ptl is origin, 1 is length(x), w is width{y), h is height(z), a is rotation angle(z

rotation in AUNITS mode)
;ptl is smallest x, median y
;ex. of draw:

i

(defun insert-3dcube-main (ptl 1 w h a / cmd_var origin pt2 pt3 pt4d)
(setq origin ptl) ;save origin for rotation
(setq ptl (list (car ptl) (- (cadr ptl) (/ w 2.0)) (caddr ptl)))
(setq pt2 (list (car ptl) (+ (cadr ptl) w) (caddr ptl)))
(setqg pt3 (list (+ (car ptl) 1) (+ (cadr ptl) w) (caddr ptl)))
(setq pt4 (list (+ (car ptl) 1) (cadr ptl) (caddr ptl)})
;Draw cube.
(insert-3d-polygon (list ptl pt2 pt3 pt4) h)
;Rotate into position.
(setq cmd_var (getvar "CMDECHO"))
(setvar "CMDECHO" 0)
(command "__.ROTATE" (entlast) "" origin a)
(setvar "CMDECHO" cmd_var)
;Return values.
(list (hanlast))

; ;*'k*************'k***

;returns list with: (<handle list> <start pt list of centerline> <end pt list

centerline>)
; (insert-3dcube '2 '20)

of

54

USACERL TR 96/58

(defun insert-3dcube (width height / ptl pt2)
;get centerline for cube
(setqg ptl (getpoint "From point: "))
(setqg pt2 (getpoint ptl "\nTo point: "))
(if (null width) (setg width (getint "Enter width: ")))
(if (null height) {setq height (getint "Enter height: ")))
(insert-3dcube-main ptl (distance ptl pt2) width height
(read (angtos (angle ptl pt2) (getvar "AUNITS") 5)))
;Return values.
(list (list (hanlast)) ptl pt2))

;;***
;returns list with: (<handle list> <start pt list> <end pt list>)
(defun insert-3dface-main (ptl pt2 pt3 pt4)
(command "_.3DFACE" ptl pt2 pt3 pt4d "")
;Return values.

(list (list (hanlast)) ptl pt2))
;;-k*'k**
;ptl = origin, pt2 = end
;returns list with: (<handle list> <start pt list> <end pt 1list>)

(defun insert-3dface (ptl pt2 height / pt3 pt4d)

(if {(null ptl) (setq ptl (getpoint "From point: ")))

(if (null pt2) (setq pt2 (getpoint ptl "\nTo point: ")))

(if (null height) (setqg height (getint "Enter height: ")))

(setq pt3 (list (car pt2) (cadr pt2) (+ height (caddr pt2)}))

(setqg ptd (list (car ptl) (cadr ptl) (+ height (caddr ptl))))

(insert-3dface-main ptl pt2 pt3 pt4))

Microstation

File: cademds.mc

Contains the Microstation Development Language (MDL) C code for Microstation
commands. This file is compiled and linked into an MDL application file that is loaded
into the Microstation system. Note that results are returned to ACE through MDL
system variable CBRAIN RESULTS.

YA R I I e +
| i
| CADCMDS.MC -- Microstation CAD Drawing Routines. |
| |
BT T e T T */
YA I e I R R +
| Include Files |
L T T T T T e */

#include <mdl.h>
#include <stdarg.h>
#include <dlogbox.h>
#include <dlogitem.h>
#include <mdlio.h>
#include <rscdefs.h>
#include <msinputqg.h>

#include <tcb.h>

USACERL TR 96/58

55

#include <global.h>
#include <mselems.h>
#include <userfnc.h>
#include <userpref.h>
#include <widechar.h>
#include <mselemen.fdf>
#include <cexpr.h>

#include "cadcmds.h"
#include "cmd.h"
#include "dialog.h"

#define CADCMDSTAG 98 /* Unique ID to identify our extended data. */
extern DialogHookInfo uHooks|[];

int numShapePts;

Dpoint3d shapePts[10];

int listBoxItemSelected;

ULong curFilePos, curTag;

MSElementUnion curElement;

char instName[50}, resultBuf {250];

double curWidth, curLength, curHeight;

double dialogxl, dialogx2, dialogx3, dialogx4;
double dialogyl, dialogy2, dialogy3, dialogy4;
double dialogzl, dialogz2, dialogz3, dialogz4;

JAREEREEEEE R I I +
| Routine Definitions |
T T T T */
AR e e I I +
LR It I I */

double getAngle(Dpoint3d *ptl, Dpoint3d *pt2) {
if (ptl->y <= pt2->y)
return acos((pt2->x - ptl->x) / mdlVec_distance(ptl, pt2) };
else {
if (pt2->x < ptl->x)
return acos((pt2->x - ptl->x) / mdlVec_distance(ptl,
fc_piover2;
else if (pt2->x == ptl->X)

return acos((pt2->x - ptl->x) / mdlVec_distance(ptl,

fe_pi;
else

return acos{ (pt2->x - ptl->x) / mdlVec_distance(ptl,

fc_piover2;
}

}
Y A I T I +
R I R i e */

void addTag (ULong filePos) {
char temp([10];
if (mdlAssoc_tagElement (&curTag, filePos, 0) != SUCCESS)
printf ("error tagging element\n");
else {
printf ("element tagged with %1d\n", curTag);
sprintf (temp, "%1d", curTag):;
mdlSystem putenv ("TAG_VALUE", temp);

pt2)

pt2)

pt2)

)

)

)

+

+

USACERL TR 96/58

}
A R e I I I i +
T T T */

void getTag (MSElementUnion *element) {
char temp{10];
if (mdlAssoc_isTagged(&curTag, element)) {
printf ("element tagged with %1d\n", curTag);
sprintf (temp, "%14", curTag);
mdlSystem_putenv ("TAG_VALUE", temp);

else
printf ("element not tagged\n");

void addXDataName (MSElement *element, char *name) {
gwData attrData;
LinkageHeader linkHdr;

memset (&attrData, '\0', sizeof(gwData)):
memset (&linkHdr, '\0', sizeof (LinkageHeader)) ;
linkHdr.primaryID = CADCMDSTAG;
linkHdr.user = 1;
strcpy(attrData.instName, name);
if (getXDataName (element))
mdlLinkage_deleteFromElement (element, CADCMDSTAG, 1, NULL, NULL, NULL);
mdlLinkage_appendToElement (element, &linkHdr, &attrData, 1, NULL);

int getXDataName (MSElement *element) {
typedef struct attrUnion ({
LinkageHeader linkHdr;
gwData attrData;
} attrInfo;
attrinfo attribs;

if (mdlLinkage_extractFromElement (&attribs, element, CADCMDSTAG, 1, NULL, NULL,

NULL) ==
NULL) {
printf ("no linkage info found\n"):
return FALSE; 1}
strcpy{instName, attribs.attrData.instName);
return TRUE;
}
A R e R i +
| name elmDscr_show - useful function to dump an elm descr
e I I I I I I it */

pPublic int elmDscr_show(MSElementDescr *elmDscrP, char *currentIndent) f{
char indent[128];
int color, weight, style, level, ggNum, class, locked, new,

modified, viewIndepend, solidHole;

if (elmDscrP == NULL) return SUCCESS;

strecpy{indent, currentIndent);

USACERL TR 96/58 57

strcat (indent, "| "y

do {

mdlElement_getSymbology (&color, &weight, &style, &elmDscrP->el);

mdlElement_getProperties (&level, &ggNum, &class, &locked, &new,
smodified, &viewIndepend, &solidHole, &elmDscrP->el);

printf ("%$shdr=%4d, typ=%d, cmplx=%d, ", currentIndent,
elmDscrP->h.isHeader, elmDscrP->el.hdr.ehdr.type,
elmDscrP->el.hdr.ehdr.complex) ;

printf ("c=%d,w=%d, s=%d, 1=%d, gg=%d, c1=%d\n",
color, weight, style, level, ggNum, class);

if (elmDscrP->h.isHeader) {
elmDscr_show(elmDscrP->h.firstElem, indent);
printf ("$send of chain\n", currentIndent);

elmDscrP = elmDscrP->h.next;
} while {(elmDscrP);

Private void dataButtonHit (Dpoint3d *point, int view) {
ULong tag;

int segment;

Dpoint3d closestPoint;

curFilePos = mdllLocate_findElement (point, view, 0, 0, FALSE);
if (!curFilePos)
mdloutput_printf (MSG_STATUS, "Element not found");

else {
mdloutput_printf (MSG_STATUS, "ELEMENT FOUND: type=%d",

dgnBuf ->ehdr. type) ;

/* MODIFIED TO ALSO DISPLAY XDATA NAME AND TAG */
getXDataName ((MSElement *)dgnBuf) ;
getTag ((MSElementUnion *)dgnBuf) ;

if {(dgnBuf->ehdr.type == LINE_STRING_ELM) {
mdllocate_getProjectedPoint (&closestPoint, &segment, NULL);
mdlOutput_printf (MSG_PROMPT,)
"Iocate point=[%d,%d,%d], segment=%d4d",
closestPoint.x, closestPoint.y, closestPoint.z, segment);

| name locateElement - print out element type of elements pointed |
| to by user. I

Public cmdName locateElement (void) cmdNumber CMD_PICKIT {
mdlState_startPrimitive(dataButtonHit, locateElement, 0, 0);

/* reset the location logic */
mdllLocate_init () ;

/* allow any element */
mdlLocate_allowLocked() ;

58 USACERL TR 96/58
/* change the cursor to be the "locate" cursor */
mdlLocate_setCursor() ;

}
YA e TIPS +
+ PARAMETERS: center = center point of cube
+ NOTE:
+ This routine assumes that the following variables are set:
+ curLength = length of cube (x direction)
+ curWidth = width of cube (y direction)
R e T IR */
void makeCubePts (Dpoint3d *center) {
double halflength, halfwidth;
/* set points */
halflength = curLength/2.0;
halfwidth = curWidth/2.0;
shapePts[0] .x = center->x-halflength;
shapePts{0] .y = center->y-halfwidth;
shapePts [0] .z = center->z;
shapePts[1] .x = center->x-halflength;
shapePts[1] .y = center->y+halfwidth;
shapePts 1] .2 = center->z;
shapePts [2] .x = center->x+halflength;
shapePts[2] .y = center->y+halfwidth;
shapePts [2] .z = center->z;
shapePts[3] .x = center->x+halflength;
shapePts [3] .y = center->y-halfwidth;
shapePts[3] .2 = center->z;
shapePts (4] .x = shapePts[0] .x;
shapePts[4] .y = shapePts[0] .y:
shapePts (4] .z = shapePts[0].z;
numShapePts = 5;
}
YA e eI I +
+ placeShape: To place a shape in the drawing.
+ NOTE:
+ This routine assumes that the following variables are set:
+ shapePts = array of shape points
+ numShapePts = number of points for shape
+ curHeight = height of cube (z direction)
+ instName = name to append to element
R e I I */
int placeShape() {
MSElement element;
Dpoint3d basePt, topPt;
MSElementDescr *dscrl, *dscr2;
/* create shape and add to design file */
if (mdlShape_create(&element, NULL, shapePts, numShapePts, 0) == SUCCESS) {
if (mdlElmdscr_new(&dscrl, NULL, &element) != SUCCESS) {

mdlOutput_error ("Error Creating Descriptor for Shape!");
return (FALSE) ;

/* 1 = cap (SOLID), 0 = nocap (SURFACE) */
mdlParams_setActive (1, ACTIVEPARAM CAPMODE);

/* project shape up (projected by distance from basePt to topPt)

*/

USACERL TR 96/58

59

basePt.Xx = basePt.y = basePt.z = topPt.x = topPt.y = topPt.z
topPt.z = curHeight;

if (mdlSurface_project (&dscr2, dscrl, &basePt, &topPt, NULL) !=

mdlOutput_error ("Error Projecting Shape Surface!");
return (FALSE) ;

/* add instance name */
addXDataName (&dscr2->el, instName);

/* display and add final cube */
mdlElmdscr_display(dscr2, 0, NORMALDRAW);
curFilePos = mdlElmdscr_add(dscr2);

/* tag element */
addTag (curFilePos) ;

/* debugging */
elmDscr_show(dscr2, "cube - ");

/* free descriptors */
mdlElmdscr_freeAll (dscrl) ;
mdlElmdscr_freeAll (dscr2);

else {
mdlOutput_error ("Error Creating Shape!"):
return (FALSE) ;

}

return (TRUE) ;

int boxwed3 (Dpoint3d *ptl, double 1, double w, double s, double h, double a)
Dpoint3d center;

curLength = 1;
curWidth = w;
curHeight = h - s;

center.x = ptl->x + (1 / 2.0);
center.y = ptl->y;

center.z = ptl->z + s;
makeCubePts (¢er) ;
placeShape () ;

return (TRUE) ;

}
A R I I I I il +
I T T i */

Public int main (void) {
RscFileHandle rscHandle;
char *setP;

/* opeﬁ resource file */
mdlResource_openFile (&rscHandle, 0, FALSE);

/* load the command table */
if (mdlParse_loadCommandTable (NULL) == NULL)
mdloutput_printf (MSG_STATUS, "Error Loading Command Table");

/* Publish the dialog item hooks */

{

60

USACERL TR 96/58

mdiDialog_hookPublish (sizeof (uHooks) /sizeof (DialogHookInfo) ,

/* open main dialog box */
mdlDialog_open (NULL, DIALOGID_CADTALK) ;

uHooks) ;

/* Initialize the C Expression environment and publish our variables */

/* to the environment so the dialog box mananger can access them */
setP = mdlCExpression_initializeSet (VISIBILITY_DIALOG_BOX, 0, FALSE);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogxl", &dialogxl);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogx2", &dialogx2);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogx3", &dialogx3);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogx4", &dialogx4);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogyl", &dialogyl);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogy2", &dialogy2);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogy3", &dialogy3);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogy4", &dialogy4d);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogzl", &dialogzl);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogz2", &dialogz2);
mdlDialog_publishBasicVariable(setP, &floatType, "dilalogz3", &dialogz3);
mdlDialog_publishBasicVariable(setP, &floatType, "dialogz4", &dialogz4);
}
YA R i i +
| Command Handling routines |
B T T T TP */
YA R I T I I I I +
R i T i P */
vold getWord{char **args, char *word) {
char *temp;
if (*args == NULL) return;
strepy (word, *args);
temp = strchr(word, ' ');
if (temp != NULL) *temp = '\0';
/* printf ("word %s\n", word); */
*args = strchr(*args, ' ');
if (*args == NULL) return;
while (**args == ' ') ++*args;
}
YA I I I T +
B T e I i IR */
void getFloatArg(char **args, double *x) {
if (*args == NULL) return;
*x = atof (*args);
*args = strchr(*args, ' ');
if (*args == NULL) return;
while (**args == ' ') ++*args;
/* printf("x %f, args %s\n", *x, *args); */
}
A R I T e T I +
B I T I */
void getULongArg(char **args, ULong *Xx) {
if (*args == NULL) return;
*x = atol(*args);
*args = strchr(*args, ' ');
if (*args == NULL) return;
while (**args == ' ') ++*args;
/* printf("x %1d, args %s\n", *x, *args); */

USACERL TR 96/58

61

void getLongArg(char **args, long *x) {
if (*args == NULL) return;
*X = atol (*args);
*args = strchr(*args, ' ');
if (*args == NULL) return;
while (**args == ' ') ++*args;
/* printf("x %1d, args %s\n", *X, *args); */

void getPointArg(char **args, Dpoint3d *pt) {
getFloatArg(args, &pt->Xx);
getFloatArg{args, &pt->y);
getFloatArg(args, &pt->z);
/* printf ("pt %f %f %f\n", pt->x, pt->y, pt->z); */

| tagValue: retrieves the last tag_value set

Public cmdName void tagValue() cmdNumber CMD_GET_TAG {
char temp[10];
mdlSystem_getenv(temp, "TAG_VALUE", 10);
sprintf (resultBuf, "\"%s\"", temp);
mdlSystem putenv ("CBRAIN_RESULTS", resultBuf):

| getElementID: given id (tag) will find element and |
| set curElement and curFilePos |

Public cmdName int getElementID({char *args) cmdNumber CMD_GET_ELEMENT_ID {
ULong tag;

getULongArg(&args, &tag);

if (mdlAssoc_getElement (&curElement, &curFilePos, tag, 0} != SUCCESS)
printf ("element %d not found\n", tag);
return 0; 1}

if (curElement.ehdr.deleted) {
printf (*element %d found, but deleted\n", tag):;
return 0; 1} .

printf ("element %d found at %1d, type=%d\n", tag, curFilePos,

curElement.ehdr. type);

curTag = tag;

return 1;

Public cmdName deleteGWObj (char *args) cmdNumber CMD_DELETE_GW_OBJ {
if (getElementID(args)) {
mdlElement_undoableDelete (&curElement, curFilePos, TRUE);
mdlSystem putenv ("CBRAIN_RESULTS", "T");

| set_xdata: given id (tag) and instance name will find the element, |
| set it's xdata, and return its instName |

62

USACERL TR 96/58

Public cmdName set_xdata(char *args)

if (getElementID(args)) {
getULongArg (&args, &curTag);
getWord (&args, instName) ;
addXDataName (&curElement, instName) ;

mdlElement_rewrite(&curElement, NULL, curFilePos);

mdlSystem_ putenv ("CBRAIN_RESULTS", "T");

cmdNumber CMD_SET_ XDATA {

Y A e i e I +
| get_xdata: given id (tag) will find the element and return
| its instName |
B T T T */
Public cmdName get_xdata{char *args) cmdNumber CMD_GET XDATA {
if (getElementID(args)) {
getXDataName (&curElement) ;
mdlSystem _putenv ("CBRAIN RESULTS", instName);
}
}
YA R T I +
| alert: Display args in an okay/cancel box
B R I T T I */
Public cmdName alert(char *args) cmdNumber CMD_ALERT {
mdlDialog_openAlert (args);
}
Y R I T T +
B T T T T T T */
Public cmdName void insert_text(char *args) cmdNumber CMD_INSERT TEXT {

Dpoint3d origin;
char message[50] ;
MSElement element;

if (args[0] == '\0') return;

/* get origin */
getPointArg(&args, &origin);

/* get text to be placed on screen */
getWord(&args, message);

/* get name of instance */
getWord(&args, instName);
if (instName([0] == '\0') strcpy(instName, "NIL");

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;

mdlText_create({&element, NULL, message, &origin, NULL, NULL, NULL, NULL);

addXDataName (&element, instName) ;
mdlElement_display(&element, NORMALDRAW) ;
curFilePos = mdlElement_add(&element) ;
addTag (curFilePos) ;

mdlCurrTrans_clear();

sprintf (resultBuf, "(\"%d\")", curTag);
mdlSystem putenv ("CBRAIN_RESULTS", resultBuf);

USACERL TR 96/58

63

Public cmdName void insert3dpolygon(char *args) cmdNumber CMD_INSERT_3D_POLYGON {

int i;
double temp;

Public cmdName void insert3dcube(char *args) cmdNumber CMD_INSERT_3D_CUBE {

if (args[0] == '\0') return;

/* get numShapePts */
getFloatArg (&args, &temp);
numShapePts = (int)temp;

if (numShapePts > 8) return;

/* get corner points */
for (i=0; i < numShapePts; ++i)
getPointArg (&args, &shapePts([i]);

/* get curHeight */
getFloatArg(&args, &curHeight);

/* get instName */
getWord(&args, instName);
if (instName[0] == '\0') strcpy(instName, "NIL");

/* set last point to first point to close shape and increase numShapePts */

shapePts [numShapePts) .x = shapePts[0] .x;
shapePts [0] .y
shapePts[0] .z;

shapePts [numShapePts] .y

shapePts [numShapePts] .z
++numShapePts;

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;

/* mdlCurrTrans_translateOrigin(&shapePts([0]); */
placeShape () ;

mdlCurrTrans_clear():;

Dpoint3d temp, origin, end;
double xLength, yLength, zLength, rotation;

if (args([0] == '\0') return;

/* get origin */
getPointArg (&args, &origin);

/* get xLength, yLength, zLength, and rotation */
getFloatArg(&args, &xLength);

getFloatArg(&args, &yLength);

getFloatArg(&args, &zLength);

getFloatArg(&args, &rotation);

/* get instName */
getWord(&args, instName);
if (instName[0] == '\0') strcpy{instName, "NIL");

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;

64

USACERL TR 96/58

mdlCurrTrans_translateOrigin(&origin) ;
mdlCurrTrans_rotateByAngles (0.0, 0.0, DEG_TO_RAD(rotation));
temp.Xx = temp.y = temp.z = 0.0;

boxwed3 (&temp, xLength, yLength, 0, zLength, 0);
mdlCurrTrans_clear();

Public cmdName void insert_line{char *args) cmdNumber CMD_INSERT_LINE {
MSElement element;

if (args[0] == '\0') return;

/* get end points of line */
getPointArg (&args, &shapePts(0]1);
getPointArg (&args, &shapePts(1]);

/* get instName */
getWord (&args, instName);
if (instName[0] == '\0') strcpy(instName, "NIL");

/* if either shapePts[0].x or shapePts(l].x == -BIGINT, then open a dialog box
*/
/* allowing the user specify the line.*/
if (shapePts[0].x == -BIGINT || shapePts[1l].x == -BIGINT) {
dialogxl = shapePts[0].x;
dialogyl = shapePts[0].y;
dialogzl = shapePts (0] .z;
dialogx2 = shapePts[1].x;
dialogy2 = shapePts[1l].y;
dialogz2 = shapePts[1l].z;
mdlDialog_openModal (NULL, NULL, DIALOGID_LINEBOX);
shapePts 0] .x = dialogxl;
shapePts [0] .
shapePts [0] .
shapePts[1].
[
[

dialogyl;

<
1]

= dialogzl;
= dialogx2;
shapePts [1] .
17.

dialogy2;

No<OX N
Il

shapePts = dialogz2;

mdlCurrTrans_begin{) ;

mdlCurrTrans _masterUnitsIdentity (TRUE) ;
mdlline_create(&element, NULL, shapePts);
addXDataName (&element, instName) ;
mdlElement_display(&element, NORMALDRAW) ;
curFilePos = mdlElement_add(&element) ;
addTag (curFilePos) ;

mdlCurrTrans_clear{);

sprintf (resultBuf, " ((\"%d\") (%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2f))",
curTag,
shapePts[0] .x, shapePts{0].y, shapePts[0].z,
shapePts[1] .x, shapePts([1l].y, shapePts{1].z);
mdlSystem_putenv ("CBRAIN _RESULTS", resultBuf);

Public cmdName void insert rect pts(char *args) cmdNumber CMD_INSERT_RECT_PTS {
MSElement element;

USACERL TR 96/58 65

if (args[0] == '\0') return;

/* get vertices of rectangle */

/* It is assumed that the 4 points form a rectangle */
getPointArg (&args, &shapePts[0});

getPointArg{&args, &shapePts(1]);

getPointArg(&args, &shapePts[2]);

getPointArg(&args, &shapePts[3]);

/* get instName */
getWord(&args, instName) ;

if (instName[0] == '\0') strcpy(instName, "NIL");

/* 1f either shapePts{0].x or shapePts[l].x or shapePts[2].x or shapePts([3].x ==

-BIGINT, */
/* then open a dialog box allowing the user specify the rectangle.*/
if (shapePts{0] .x == -BIGINT || shapePts[1].x == -BIGINT ||
shapePts [2] .x == -BIGINT || shapePts([3].x == -BIGINT) {

dialogxl = shapePts[0].x;
dialogyl = shapePts[0}.y;
dialogzl = shapePts[0]}.z;
dialogx2 = shapePts[1].x;
dialogy2 = shapePts[1].vy:
dialogz2 = shapePts(1l].z;
dialogx3 = shapePts (2] .x;
dialogy3 = shapePts([2].y;
dialogz3 = shapePts(2].z;
dialogx4 = shapePts{3].x;
dialogy4 = shapePts(3].y;
dialogz4 = shapePts[3].z;
mdlDialog_openModal (NULL, NULL, DIALOGID_RECTPTSBOX) ;

shapePts [0} .x = dialogxl;
shapePts [0] .y = dialogyl;
shapePts [0] .z = dialogzil;
shapePts[1] .x = dialogx2;
shapePts[1].y = dialogy2;
shapePts{1] .z = dialogz2;
shapePts [2] .x = dialogx3;
shapePts [2] .y = dialogy3;
shapePts [2] .z = dialogz3;
shapePts [3] .x = dialogx4;
shapePts[3].y = dialogy4;
shapePts[3] .2z = dialogz4;

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;
mdlShape_create(&element, NULL, shapePts, 4, 0);
addXDataName (&element, instName);
mdlElement_display(&element, NORMALDRAW) ;
curFilePos = mdlElement_add(&element) ;

addTag (curFilePos) ;

mdlCurrTrans_clear();

sprintf (resultBuf, " ((\"%d\") (%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2f)
(%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2f))",
curTag,
shapePts [0] .x, shapePts{0].y, shapePts[0].z,
shapePts[1] .x, shapePts[1l].y, shapePts[l].z,
shapePts [2] .x, shapePts[2].y, shapePts[2].z,
shapePts [3] .x, shapePts[3].y, shapePts[3].z);

66

USACERL TR 96/58

mdlSystem_putenv ("CBRAIN_RESULTS", resultBuf);

Public cmdName void insert_rect_ht{char *args) cmdNumber CMD_INSERT_RECT HT {
MSElement element;

if (args[0] == '\0') return;
/* get endpoints of base of rectangle */
getPointArg(&args, &shapePts[0]);

getPointArg(&args, &shapePts[1]);

/* get height of rectangle */
getFloatArg(&args, &curHeight);

/* get instName */
getWord (&args, instName);

if (instName[0] == '\0') strcpy(instName, "NIL");

/* if either shapePts{0].x or shapePts[l].x or height == -BIGINT, */
/* then open a dialog box allowing the user specify the rectangle. */
if (shapePts[0] .x == -BIGINT || shapePts[l]}.x == -BIGINT || curHeight ==

dialogxl = shapePts[0].x;

dialogyl = shapePts[0].y;

dialogzl = shapePts([0].z;

dialogx2 = shapePts[1].x;

dialogy2 = shapePts[1].y:

dialogz2 = shapePts({l].z;

dialogx3 = curHeight;

mdlDialog_openModal (NULL, NULL, DIALOGID RECTHTBOX) :
shapePts [0] .x = dialogxl;

shapePts [0] .y = dialogyl;
shapePts[0] .z = dialogzil;
shapePts[1] .x = dialogx2;
shapePts [1] .y = dialogy2;
shapePts[1] .z = dialogz2;

curHeight = dialogx3;

/* calculate two additional vertices */

shapePts 2] .x = shapePts[1].x;
shapePts[2] .y shapePts[1] .v:
shapePts[2] .z shapePts[1] .2z + curHeight;
shapePts [3] .x shapePts [0] .x;
shapePts [3] .y shapePts 0] .y;
shapePts (3] .z shapePts[0] .z + curHeight;

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;

mdlShape_create(&element,
addXDataName (&element,

NULL, shapePts, 4, 0);
instName) ;

mdlElement_display(&element, NORMALDRAW) ;
mdlElement_add (&element) ;
addTag (curFilePos) ;
mdlCurrTrans_clear();

curFilePos

sprintf (resultBuf,

ON"%A\") (%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2f)
(%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2£f))",

-BIGINT)

USACERL TR 96/58

curTag,

shapePts [0] .x, shapePts([0].y, shapePts([0].z,

shapePts[1l] .x, shapePts[l].y, shapePts(1].z,

shapePts[2] .x, shapePts[2].y, shapePts(2].z,

shapePts[3] .x, shapePts[3].y, shapePts([3].2z);
mdlSystem putenv("CBRAIN_RESULTS", resultBuf);

et

/

I

| name: insert_arc
| arguments:

| point - the center of the circle that the arc is part of
| point - starting point of the arc

| angle - the sweep angle (radians)

|

|

|
|
I
|
|
!
string - name for the arc |
This assumes that arc lies flat in a plane parallel with z=0

/
Public cmdName void insert_arc{(char *args) cmdNumber CMD_INSERT_ARC {
MSElement element;
Dpoint3d center, start;
double startang, sweepang, radius;

if (args[0} == '\0') return;

/* get center and two angles of arc */
getPointArg(&args, ¢er);
getPointArg(&args, &start);
getFloatArg(&args, &sweepang);

/* get instName */
getWord (&args, instName);
if (instName[0] == '\0') strcpy(instName, "NIL");

/* if either center.x or start.x or sweepang == -BIGINT, then open a dialog box
*/
/* allowing the user specify the arc.*/
if (center.x == -BIGINT || start.x == -BIGINT || sweepang == -BIGINT) {
dialogxl = center.x;
dialogyl = center.y;
dialogzl = center.z;
dialogx2 = start.x;
dialogy2 = start.y;
dialogz2 = start.z;
dialogx3 = sweepang;
mdlDialog_openModal (NULL, NULL, DIALOGID_ARCBOX) ;
center.x = dialogxl;
center.y = dialogyl;
center.z = dialogzl;

start.x = dialogx2;
start.y dialogy2;

i

start.z = dialogzZ;v
sweepang = dialogx3;

}

radius = sqrt((center.x - start.x)*(center.x - start.x) +
(center.y - start.y)*(center.y - start.y));
startang = atan2(start.y - center.y, start.x - center.Xx);

mdlCurrTrans_begin();
mdlCurrTrans_masterUnitsIdentity (TRUE) ;

68

USACERL TR 96/58

mdlArc_create(&element, NULL, ¢er, radius, radius, NULL, startang, sweepang);

addXDataName (&element, instName);
mdlElement_display(&element, NORMALDRAW) ;
curFilePos = mdlElement_add(&element) ;
addTag (curFilePos) ;

mdlCurrTrans_clear() ;

/* return center point, start point, and sweep angle */
sprintf (resultBuf, " ((\"%d\") (%4.2f %4.2f %4.2f) (%4.2f %4.2f %4.2f) %f)",
curTag,
center.x, center.y, center.z, start.x, start.y, start.z, sweepang);
mdlSystem_putenv ("CBRAIN_RESULTS", resultBuf);

USACERL TR 96/58

Appendix B: Application Programming
Interface (API)

The following list is the application programming interface (API) for the ACE/CAD
interface. The API is composed of two separate sections of code. The first is code for
ACE mainly written in LISP. This code provides the low-level CBrain functionality
and handler functions for use by BB-OBJECT, the main object from which all others
descend in ACE. These handlers are written in a generic form and are customized for
use with specific CAD systems.

The second section of code is written for a specific CAD system. It contains functions
that will be called by handlers written in ACE. These functions are mainly creation
functions of the base CAD shapes and access functions for information stored within
the CAD drawing. Some user interface code is also listed for creating menus and
presenting information to the CAD user.

ACE

Two low-level main functions are defined in CBrain for use in ACE:

ac-eval -
This function accepts an argument and sends it to the CAD system for
evaluation. Typically this argument is a CAD command, such as
"insert-line".

ac-eval-text -
This function is similar to ac-eval but accepts a string representation
of the symbol. When this string is received in the CAD system, it is
first converted to an symbol before evaluation.

Following are LISP functions and handlers defined for system startup and CAD
interaction.

70

USACERL TR 96/58

khkhkkhkhkhkhkhkhkkhhkdkhdhhkhhhhdhohkhdrhdhhhkhkhhdhhhhkhhdodkhkhhhhkhhdhkhhaohhkbdhkhhdhhhkrrrhhhddrd

BASE FUNCTIONS:

kkhkkhkhkhkhhkhhkhkhkhhkhdhbhkhkhkhdhhdhkhkhdhhkhkhhdhkhkhhhkkhrhhhkhkhkhkhkhhhdhdrhhhdrhddhhkhrrhkhkhhkhkhkkkd

go-to-cad = Start the CAD system
Parameters:
agent = Current agent working under
Note:
The current agent name is passed to the CAD system.
New instances created within CAD belong to this agent.
Usage:
(go-to-cad 'user)

khkkhkkkhkhkhkkhhkhkhkhkhkhhkhdhkhhkhkdkhkhhhkhhkhkhhhhhhrhhhdhrhkkdhkdhhhkdhkdhhrkrhdbhhhhrhhhkddhk

GENERIC FUNCTIONS:

Khkkdkhkkdkhkkhhkhkhkhkkhhhkhkkhhhkdkhhkhhhkkkhhkkhkdkhkhhkhkhhkkkhkhhkhhkhkhhrdrhkhrkkkkhkkhhkdkkkk

is-drawable-frame = Test if frame is CAD drawable
Parameters:

frame = Frame name (either symbol or string)
Usage:

(is-drawable-frame 'wall)

(is-drawable-frame "wall")

all-drawable = Return a list of all CAD drawable frames
Parameters:

NONE
Usage:

(all-drawable)

cad-draw-all = Draw all instances of a frame (send cad-draw message to all
instances)
Parameters:
frame = Frame name (either symbol or string)
Usage:

(cad-draw-all 'wall)
(cad-draw-all "wall")

Akhhkhhhhkhhkhkhkkhhdhhhkhhdhhkh bk hhkhkbhhkhkhhkh bk hhdhhkhrhkhkhkhkdhhkhhbrhkhdrdhdhdbhhhxd

BB-OBJECT HANDLERS:
Kkkkkkkkkhhkkhhhhkkhkkkkkkkkkkkkkhkk kA Rk kkhkkkkhkkkhkhhkhkhhkhhkkkkkkkhrrrrk

get-drawable = Get instance's drawable status
Parameters:
NONE
Note:
If value is 't than is drawable, else is not drawable.
Usage: ‘
(send-msg 'walll :get-drawable)

USACERL TR 96/58 71

set-drawable = Set instance's drawable status
Parameters:

new status = Instance's new drawing status
Usage:

(send-msg 'walll :set-drawable 't)

editable-slots = Return a list of slots the user may change
Parameters: ’
NONE
Note:
This handler is called from the CAD system to get a list of slots
the user may change.
Usage:
(send-msg 'walll :editable-slots)

kkhkhkhhkhkhhkhkhkhkhkhdhhkhkhdhhkhbhkhhhkbdhhkhkhbdhhkhkhhhbhhkhkrdhhhh kb khkbhhhhhkdhkrhhhhkhhhkdhdk

BB-OBJECT REDIRECTION HANDLERS:

LA R E R R SR EEE RS RS RSEE R AR R RS RRERERR R RER R Rl RREREREEREEEREEEEEERS]

get-view-tag = Returns a list of tags that represent the CAD system
unique identifiers for the associated objects
Parameters:
NONE
Usage:
(send-msg 'walll :get-view-tag)

set-view-tag = Sets a list of tags that represent the CAD system
unique identifiers for the associated objects
Parameters:
tags = List of unique identifiers
Usage:
(send-msg 'walll :set-view-tag '(12))

clear-view-tag = Clears the list of tags that represent the CAD system
unique identifiers for the associated objects
Parameters:
NONE
Usage:
(send-msg 'walll :clear-view-tag)

cad-create = Initialize newly created object
Parameters:
NONE
Note:
This function is called when a new instance is created from within
the CAD system. It can be used to initialize slot values within
the instance or any other purpose the user defines.
When called, ACE will determine current CAD system, then call either
the handlers:
acad-create - For AutoCAD
mstation-create - For Microstation

72

USACERL TR 96/58

The default implementation will do nothing.
Usage:
(send-msg 'walll :cad-create)

cad-draw = Draw object in CAD system
Parameters:
NONE
Note:
This function is called to draw the ACE object within the CAD system.
When called, ACE will determine current CAD system, then call either
the handlers:
acad-draw - For AutoCAD
mstation-draw - For Microstation
The default implementation will draw the object as a CAD text object
Usage:
(send-msg 'walll :cad-draw)

CAD System

Two low-level main functions are defined in CBrain for use in the CAD system:

cl-eval -
This function accepts an argument and sends it to ACE for evaluation.
Typically this argument is an ACE command, such as "create-instance."
cl-eval-text -
This function is similar to cl-eval but accepts a string representation of
the symbol. When this string is received in ACE, it is first converted to
a symbol before evaluation.

AutoCAD

The following are functions defined in AutoLisp for the manipulation of extended
entity data of an AutoCAD object and the creation of generic graphical representations
of objects.

Ak hk kAR R Ak kI kA Ak hk Ak ko kkhkhhhkkhkk kA kA kA khkkhkhhhhkhkkkhkkhhkkkkdkkkrdhhrkrdhh s

EXTENDED ENTITY DATA FUNCTIONS:

hkkkhkkhkkkkkkkkkkkhhhkhhhkhkhhhhAkkkkkhkhrhhhkkhkhkkkhk kb khkkkkkkkkkkkkhhkdxhhhkkk

add-xdata = Add extended entity data instance name to the AutoCAD object
Parameters:

entity name = AutoCAD entity object entity information

instance name = String of instance name
Usage:

(add-xdata (entlast) "walll")

USACERL TR 96/58 73

get-xdata = Get extended entity data instance name from the AutoCAD object
Parameters:

entity name = AutoCAD entity object entity information
Usage:

(get-xdata (entlast))

Ak kKA KA KR Ak kb bk bk kk Ak bk ok kkkhhhkkkhkhkhd bk kA hkh ko kkdhh kA kA kxkkkkkhkkkkdkhkkhkhi

OBJECT CREATION FUNCTIONS:
hkkhkkkh kXA R Ak kkkkkk ok hkhkkkk ok ko k ok kkkkkkkhkhkkkkk ok k ok ke ok ok k ko kkhkkkkkk Ak kkkk k&

insert-text = Add an AutoCAD text object
Parameters:

pt = Insertion point

text = Text to be inserted
Usage:

(insert-text '(5 5 0) "hi")

insert-line = Add an AutoCAD line object
Parameters:

ptl = Start insertion point

pt2 = End insertion point
Usage:

(insert-line '(0 0 0) '(10 10 0))

insert-2d-polygon = Add a 2d polygon object (an AutoCAD pline object)
Parameters:

corners = List of points defining the polygon
Usage:

(insert-2d-polygon '((13000 -1800 0) (18000 -5900 0) (13000 -8000 0)))

insert-3d-polygon = Add a 3d polygon object (an AutoCAD pface object)
Parameters:

corners = List of points defining the polygon

height = Height of polygon
Usage:

(insert-3d-polygon '((13000 -1800 0) (18000 -5900 0) (13000 -8000 0))
'500)

insert-3dcube-main = Add a 3d cube object (an AutoCAD pface object)
Parameters:

pt = Edge center point of cube

length = Length of cube

width = Width of cube

height = Height of cube

angle = Angle of cube
Note:

Here is a detailed description of parameter relations:
pt is origin, length(x), width(y), height(z), a is rotation angle(z rotation
in AUNITS mode)
pt is smallest x, median y

74 USACERL TR 96/58

ex. of draw:

(insert-3d-cube-main '(0 0 0) '10 '1 '8 '0)

Microstation

Microstation uses the same functions for interaction with the CBrain communication
interface. In addition, the following commands are defined in C programming lan-
guage for the manipulation of extended entity data of a Microstation object and the
creation of generic graphical representations of objects.

Fhkhkkhkhkhkhhkhkhhhhkhdkhhhdkhhhhkhkdhkhkdhkkkkhkkkhhkkhkhddhhkd bk khkhkhkhkhhhkhkhdhkdxhhkhkkkhkkhk ok khdx

EXTENDED ENTITY DATA COMMANDS:

IE A S RS SR A SR SRR R R RS R R R R R S S S R R RS R RS R X RS SR EE RS R RS R R R SRR R R R R R RS ESEESE]

get_tag = Retrieves the last tag (id) value set
Parameters:

NONE
Usage:

get__tag

get_element_id = Display information of object matching id value
Parameters:

id = id of object to display information on
Usage:

get_element_id 12

delete_gw_obj = Delete object matching id value
Parameters:

id = id of object to delete
Usage:

delete_gw_obj 12

set_xdata = Set object’s extended entity (user) data
Parameters:

id = id of object to set extended entity (user) data

instance name = String containing instance name to set
Usage:

set_xdata 12 WALLl

get_xdata = Get extended entity (user) data of object matching id wvalue

e

USACERL TR 96/58 75

Parameters:

id = id of object to get extended entity (user) data of
Usage:

get_xdata 12

alert = Display string in an okay/cancel dialog box
Parameters:
text = String to display

Usage:
alert THIS IS A TEST
Ik khk kA Ak hh kb Ak hhkhkhkhhkrAr Rk hkrkkkhkhhkhhkhkhdhhhkhdhhhhkkdhhhhkhkhhkhhhrhhdbhkkhkhkkkkhkhhkdhhkk
|
|
|

OBJECT CREATION COMMANDS:

Ak hkhkkkkkkkhkhkkkhkkhdhhkhhkkbhdkkkkhdhhdbhdhkhkdhhhkkdkhhdkkkdhkhkhkhkhkkrkkkkkdkhdkhhkdhhkhdhd

insert_text = Place a text object
Parameters:
origin = Origin of text object
text string = String for text object
optional instance name = String containing instance name to set in
extended entity (user) data
Usage:
insert_text 0 0 0 WALL1 WALL1

insert_3d polygon = Place a 3d polygon object
Parameters:
Number points = Number of points in polygon object
points = Listing of points in polygon object (multiple up to number given)
height = Height for polygon object
optional instance name = String containing instance name to set in
extended entity (user) data
Usage:
insert_3d_polygon 3 0 0 0 10 0 0 0 10 0 20 OBJ1

insert_3d cube = Place a 3d cube object
Parameters:

origin = Origin of cube object

X length = X length of cube object

vy length = Y length of cube object

z length = Z length of cube object

rotation = Rotation of cube object

optional instance name = String containing instance name to set in
extended entity (user) data
Usage:

insert_3d_cube 0 0 0 10 10 20 0 OBJ1

insert_line = Place a line object
Parameters:
pointl = First point of line object
point2 = Second point of line object

76

USACERL TR 96/58

optional instance name = String containing instance name to set in
extended entity (user) data
Usage:

insert_line 0 0 0 10 10 0 OBJ1

insert_rect_pts = Place a rectangular object

Parameters:
pointl = First point of rectangular object
point2 = Second point of rectangular object

point3 = Third point of rectangular object

point4 = Fourth point of rectangular object

optional instance name = String containing instance name to set in
extended entity (user) data
Usage:

insert_rect_pts 0 0 0 10 10 0 0 0 10 10 10 10 OBJ1

insert_rect_ht = Place a rectangular object
Parameters:
pointl = First point of rectangular object

|

point2 = Second point of rectangular object

height = Height for rectangular object

optional instance name = String containing instance name to set in
extended entity (user) data
Usage:

insert_rect_ht 0 0 0 10 10 0 10 OBJ1

insert_arc = Place an arc object
Parameters:
center = Center point of arc object
starting point = Starting point of arc object
sweep angle = Sweep angle of arc (in radians)
optional instance name = String containing instance name to set in
extended entity (user) data .
Usage:
insert_arc 0 0 0 10 0 0 0.5 OBJ1

USACERL TR 96/58

77

Acronyms and Abbreviations

CRaDA
DDE
DLL
LCS
MDL
OLE

Agent Collaborative Environment
architecture/engineering community
application programming interface

computer-aided drafting

Cooperative Research and Development Agreement v

Dynamic Data Exchange

Dynamic Link Library

local coordinate system

Microstation Development Language

Object Linking and Embedding

78 USACERL TR 96/58

DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CECC-R
ATTN: CERD-L
ATTN: CEMP-ET (2)

Defense Tech Info Center 22304
ATTN: DTIC-O (2)

10
1/96

This publication was reproduced on recycled paper.

s

